- Расчёт и настройка фазоинвертора акустической системы
- Простой способ настройки акустической системы с фазоинвертором
- 21 комментарий: Простой способ настройки акустической системы с фазоинвертором
- Простой способ настройки акустических систем с фазоинвертором
- Как это работает?
- Камрад, рассмотри датагорские рекомендации
- 🌼 Полезные и проверенные железяки, можно брать
Расчёт и настройка фазоинвертора акустической системы
Как правильно спроектировать фазоинвертор? Какой должна быть частота резонанса фазоинвертора? Какими должны быть длина и диаметр? Онлайн калькулятор размеров тоннеля фазоинвертора.
Фазоинвертор (с точки зрения акустики) – это порт (труба, щель и т. д.) в корпусе акустической системы, обеспечивающий расширение воспроизводимого НЧ – диапазона за счёт резонанса этого порта на частоте более низкой, чем резонансная частота динамика.
Использование фазоинверторного типа даёт возможность не только расширить нижний частотный диапазон закрытого ящика, но и повысить коэффициент полезного действия. Тоннель фазоинвертора может выполняться различной формы и размещаться – на любой поверхности колонки.
При разработке акустической системы крайне важно правильно выполнить расчёт фазоинверторного короба, так как от этого зависит не только диапазон воспроизводимых частот, но и качество всего звука в целом.
Давайте индифферентно отнесёмся к многообразию теоретических аспектов, описывающих физику процессов в данном типе акустики, а сразу ответим на вопрос: «А почему, собственно?». Такой вопрос может возникнуть у энтузиаста, который рассчитал размеры фазоинвертора по известной формуле из умной книжки и убедился в её несостоятельности в процессе неудачного практического опыта!
Напрягаться сильно не придётся, потому как синьор Жан-Пьеро Матараццо (авторитетный специалист в области профессиональной акустики) уже помог нам разобраться в этом актуальном вопросе.
Вот что уважаемый итальянский специалист-акустик написал в статье «Теория и практика фазоинвертора»:
Рис.1 Конструкции фазоинверторов с тоннелем в виде трубы
Одним из наиболее часто встречающихся пожеланий в электронной почте автора является – привести «магическую формулу», по которой читатель ACS мог бы сам рассчитать фазоинвертор. Это, в принципе, нетрудно. Фазоинвертор представляет собой один из случаев реализации устройства под названием «резонатор Гельмгольца» (Рис.1 а). Частоту настройки резонатора Гельмгольца (или фазоинвертора, что одно и то же) можно рассчитать по формуле:
где: Fb – частота настройки (Гц), с – скорость звука (344 м/с), S – площадь сечения тоннеля (кв. м), L – длина тоннеля (м), V – объем ящика (куб. м), π = 3,14.
Эта формула действительно магическая, в том смысле, что настройка фазоинвертора не зависит от параметров динамика, который будет в него установлен. Объём ящика и размеры тоннеля частоту настройки определяют раз и навсегда. Всё, казалось бы, дело сделано.
Приступаем.
Пусть у нас есть ящик объёмом 50 л. Мы хотим превратить его в корпус фазоинвертора с настройкой на 50 Гц. Диаметр тоннеля решили сделать 8 см. По только что приведённой формуле частота настройки 50 Гц получится, если длина тоннеля будет равна 12,05 см. Аккуратно изготавливаем все детали, собираем их в конструкцию, как на Рис.1 б), и для проверки измеряем реально получившуюся резонансную частоту фазоинвертора.
И видим, к своему удивлению, что она равна не 50 Гц, как полагалось бы по формуле, а 41 Гц. В чем дело и где мы ошиблись? Да нигде. Наш свежепостроенный фазоинвертор оказался бы настроен на частоту, близкую к полученной по формуле Гельмгольца, если бы он был сделан, как показано на Рис.1 в). Этот случай ближе всего к идеальной модели, которую описывает формула: здесь оба конца тоннеля «висят в воздухе», относительно далеко от каких-либо преград. В нашей конструкции один из концов тоннеля приближается к стенке ящика. Для воздуха, колеблющегося в тоннеле, это небезразлично, из-за влияния «фланца» на конце тоннеля происходит как бы его виртуальное удлинение. Фазоинвертор окажется настроенным так, как если бы длина тоннеля была равна 18 см, а не 12, как на самом деле.
Казалось бы, если тоннель полностью разместить снаружи ящика, Рис1.а) – справа, у нас получается резонатор Гельмгольца в чистом виде. Однако на практике и тут существует эмпирическая зависимость «виртуального удлинения» тоннеля в зависимости от его размеров.
Для круглого тоннеля, один срез которого расположен достаточно далеко от стенок ящика (или других препятствий), а другой находится в плоскости стенки, это удлинение приблизительно равно 0,85D.
Теперь, если подставить в формулу Гельмгольца все константы, ввести поправку на «виртуальное удлинение», а все размеры выразить в привычных единицах, окончательная формула для длины тоннеля диаметром D, обеспечивающего настройку ящика объёмом V на частоту Fb, будет выглядеть так:
Здесь частота Fb – в герцах, объем V – в литрах, а длина L и диаметр D тоннеля – в миллиметрах, как нам привычнее.
Геометрические размеры тоннеля имеют свои ограничения. Великий исследователь акустических систем Р. Смолл показал, что минимальное сечение тоннеля зависит от диаметра динамика, наибольшего хода его диффузора и частоты настройки фазоинвертора. Смолл предложил совершенно эмпирическую, но безотказно работающую формулу для вычисления минимального размера тоннеля:
Формулу свою Смолл вывел в привычных для него единицах, так что диаметр динамика Ds, максимальный ход диффузора Xmax и минимальный диаметр тоннеля Dmin выражаются в дюймах. Частота настройки фазоинвертора – как обычно, в герцах.
Очень часто оказывается, что, если правильно выбрать диаметр тоннеля, он выходит невероятно длинным. А если уменьшить диаметр, появляется шанс, что уже на средней мощности тоннель «засвистит». Помимо собственно струйных шумов, тоннели небольшого диаметра обладают ещё и склонностью к так называемым «органным резонансам», частота которых намного выше частоты настройки фазоинвертора и которые возбуждаются в тоннеле турбулентностями при больших скоростях потока.
Когда расчётная длина тоннеля получается такой, что он почти помещается в корпусе и требуется лишь незначительно сократить его длину при той же настройке и площади сечения, я рекомендую вместо круглого использовать щелевой тоннель аналогичной площади, причём размещать его не посреди передней стенки корпуса, как на Рис.2 а), а вплотную в одной из боковых стенок, как на Рис.2 б).
Рис.2 Конструкции фазоинверторов с щелевыми тоннелями
Тогда на конце тоннеля, находящемся внутри ящика, будет сказываться эффект «виртуального удлинения» из-за находящейся рядом с ним стенки. Опыты показывают, что при неизменной площади сечения и частоте настройки тоннель, показанный на Рис.2 б), получается примерно на 15% короче, чем при конструкции, как на Рис.2 а).
Щелевой фазоинвертор, в принципе, менее склонен к органным резонансам, чем круглый, но, чтобы обезопасить себя ещё больше, я рекомендую устанавливать внутри тоннеля звукопоглощающие элементы, в виде узких полосок фетра, наклеенных на внутреннюю поверхность тоннеля в районе трети его длины.
Дальнейшего снижения длины тоннеля можно добиться использованием фазоинверторов конической, экспоненциальной форм, а также формы в виде песочных часов. Поскольку подобные технологии конструктивно сложны и не нашли широкого распространения в радиолюбительской практике, то и рассматривать их в рамках данной статьи мы не станем. А лучше сдобрим пройденный материал парой онлайн считалок, позволяющих рассчитать трубчатые и щелевые фазоинверторы без излишнего напряга, калькулятора и деревянных счёт.
Но сначала зададимся резонным вопросом: а на какую резонансную частоту следует настраивать фазоинвертор?
Ответ очень прост – на оптимальную частоту. Если частота резонанса фазоинвертора будет выше оптимальной, т. е. она будет находиться близко к резонансной частоте динамика в закрытом ящике, то мы получим на АЧХ выпячивающий горб, вследствие чего звучание будет бочкообразным.
Если частоту выбрать чересчур низкой, то подъём НЧ уровня не будет чувствоваться, т. к. на этой частое отдача динамика окажется слишком слабой и усиливать окажется нечего.
Таким образом – частоту резонанса фазоинвертора следует выбрать немногим ниже частоты резонанса динамика в закрытом ящике, т. е. в той области, где у динамика происходит некоторый спад звукового давления. Этот спад компенсируется подъёмом фазоинвертора, что, в конечном итоге, приведёт к расширению нижней границы воспроизводимых частот.
В большинстве реальных конструкций – частота резонанса фазоинвертора составляет 0,61. 0,65 от частоты резонанса динамика в закрытом ящике.
А как легко и просто можно узнать частоту резонанса громкоговорителя в закрытом ящике – мы с вами подробно обсудили на этой странице . Итак:
КАЛЬКУЛЯТОР РАСЧЁТА ДИАМЕТРА И ПЛОЩАДИ СЕЧЕНИЯ ТОННЕЛЯ ФАЗОИНВЕРТОРА
Диаметр тоннеля – величина, имеющая практический смысл только для фазоинверторов круглого сечения Площадь сечения – характеризует как трубчатые, так и щелевые фазоинверторы.
Рассчитаем длину тоннеля фазоинвертора по объёму ящика, резонансной частоте фазоинвертора и диаметру/ площади сечения тоннеля:
РАСЧЁТ ДЛИНЫ ТОННЕЛЯ ФАЗОИНВЕРТОРА
Посчитанная длина тоннеля верна как для цилиндрических фазоинверторов, так и для щелевых фазоинверторов, находящихся на значительном расстоянии от стенки. Если щелевой фазоинвертор расположен вплотную к одной из стенок, как на Рис.2 б), то его длину следует укоротить на 15%.
Источник
Простой способ настройки акустической системы с фазоинвертором
Схема и метод давно известен всем. Для этого собираем несложную схему генератора резонансных частот на рисунке ниже. Схема простейшая, из современных транзисторов подойдут КТ814, при замене транзисторов на структуру n-p-n, просто меняем полярность питания.
Далее подключаем ГРЧ к низкочастотному динамику (ВНИМАНИЕ! Без фильтра, напрямую), динамик должен уже стоять в готовой АС, т.е все должно уже быть собрано и загерметезировано, легким толчком пальцев по диффузору запускаем. Мембрана динамика начнет колебаться с частотой, равной резонансу динамика для данного ящика. Перед всем этим нужно изготовить туннель фазоинвертора.
Вставляем туннель в отверстие ФИ (он должен быть достаточной длины, с запасом) предварительно на внешний конец трубки закрепляем полоску скотча для удобства регулировки и исключения влияния ладони. Запускаем ГРЧ и медленно начинаем вытягивать трубку из ящика. При точной настройке должна резко уменьшиться амплитуда колебаний динамика, а амплитуда колебаний воздуха в ФИ должна наоборот, резко возрасти (можно поднести горящую свечу к ФИ и наблюдать, когда наступит максимальное отклонение пламени). На этом настройку можно считать оконченной. Фиксируем трубу ФИ подходящим клеем, все готово.
Не претендую на авторство и какое-либо “ноу-хау”, но данный метод должен действительно помочь всем, кто собрался собирать или уже собрал АС с ФИ. Большой плюс в том, что не надо делать сложных математических расчетов и специальных измерительных приборов.
По материалам сайта datagor.ru, автор: VOVCHIK
21 комментарий: Простой способ настройки акустической системы с фазоинвертором
Вариант. Есть и другой. Мерим какой-нибудь программой (например audt30d, халява сойдет) резонанс головки (в схеме два джека 3.5 + резистор). После на звуковой карте ставим такую же частоту и через усилитель подаем на динамик. Получаем тот же вариант, возможно более точный, т.к. при мультивибраторе и динамике уже в корпусе резонанс динамика уйдет от того, что в открытом воздухе. Да и с моей колокольни нафига так делать, лучше померить на той-же звуковой карте параметры Тиля-Смола и не мучиться, загнать потом в прогу и радоваться жизни.
Респект человеку что опубликовал этот дедовский метод настройки ФИ. Молодец. Просто,легко,доступно…
Источник
Простой способ настройки акустических систем с фазоинвертором
В 1981 году мы с братом решили собрать акустическую систему, да не простую, а с фазоинвертором.
Методик расчета фазоинвертора на тот момент уже было великое множество, но все они были мягко говоря запутанные, очень сложные, а местами и противоречили друг другу. И вот попалась такая методика, которая показалась простой для понимания и последующей реализации.
Как это работает?
Вставляем туннель в отверстие ФИ (он должен быть достаточной длины, с запасом) предварительно на внешний конец трубки закрепляем полоску лейкопластыря (скотча) для удобства регулировки и исключения влияния ладони рис.2 Запускаем ГРЧ и медленно начинаем вытягивать трубку из ящика. При точной настройке должна резко уменьшиться амплитуда колебаний динамика, а амплитуда колебаний воздуха в ФИ должна наоборот, резко возрасти(можно поднести горящую свечу к ФИ и наблюдать, когда наступит максимальное отклонение пламени). На этом настройку можно считать оконченной. Аккуратно снимаем заднюю стенку АС и фиксируем трубу ФИ подходящим клеем(мы использовали клей»Момент»).
Далее ставим заднюю стенку АС на место. Все готово.
В заключении хочу добавить, что к сожалению, АС настроенные по этой методике не сохранились (они ушли «с молотка»70рублей за штуку, по тем временам очень хорошие деньги). Фотографий соответственно тоже нет (я не знаю, кому могло бы придти в голову, особенно в то время, фотографировать самопальную акустику, да и «цифры» тогда не было). Поэтому, привожу рисунки, из которых все должно быть понятно.
Не претендую на авторство и какое-либо «нау-хау», но данный метод должен действительно помочь всем, кто собрался собирать или уже собрал АС с ФИ. Большой плюс в том, что не надо делать сложных математических расчетов и специальных измерительных приборов, которые и в прошлом и в настоящем имели и имеют «астрономические»цены. А последний фактор для большинства людей решающий.
[24-05-2013][+]
Стараниями наших сограждан (Meshin и Kan) найдены оригиналы в старинных журналах. Полезным окажется и описание, разъясняющее например назначение подстроечных резисторов и пр.
[17-12-2015][+] Справочник по схемотехнике для радиолюбителя, Киев, «Технiка», 1987 год, стр. 108-109
Камрад, рассмотри датагорские рекомендации
🌼 Полезные и проверенные железяки, можно брать
Опробовано в лаборатории редакции или читателями.
Источник