Как настроить фокус микроскопа

Как настроить фокус микроскопа

Область применения приборов для микроскопии настолько обширна, что указывать все сферы их использования не имеет смысла. Микроскоп давно уже перестал быть устройством для изучения образцов в лабораториях и учебных заведениях. Сегодня на рынке без труда можно найти даже детские приборы для микроскопии, которые, хотя и являются увлекательной игрушкой, все же выполняют свою задачу — помогают разглядывать увеличенное изображение мелких предметов. Что касается типов микроскопов, то их всего несколько, и самым распространенным является микроскоп, работающий в светлом поле. Особенно такие приборы для микроскопии популярны в учебных заведениях, ибо стоят относительно недорого, просты в обслуживании, а обходиться с ними можно научиться буквально за несколько минут.

Краткую пошаговую инструкцию по началу работы с описываемым микроскопом можно тезисно изложить примерно следующим образом:

  • разместить исследуемый образец на предметный столик и включить источник света. Чтобы получить необходимое для работы количество света, следует настроить ширину светового пучка и само количество света, которое будет попадать на исследуемый препарат. Для этого необходимо отрегулировать, расположенный под предметным столиком конденсор, путем вращения ручки настройки на нем;
  • наблюдение за исследуемым образом всегда необходимо начинать с минимального его увеличения. Общая увеличивающая способность микроскопа — это увеличение объектива, умноженное на увеличение окуляра;
  • отрегулировать положение окуляра таким образом, чтобы через него было удобно наблюдать за исследуемым образцом. Если взять за пример бинокулярный световой микроскоп, то четкое изображение исследуемого предмета должно наблюдаться обеими глазами. В современных моделях микроскопов для работы в светлом поле, окуляры можно развести вручную на удобное для глаз расстояние.
Читайте также:  Как настроить eplutus ep 700t

По завершении указанных настроек светового микроскопа, можно непосредственно приступать к изучению исследуемого образца. И чтобы сделать это качественно, необходимо придерживаться следующих инструкций:

  • поместить образец препарата на предметный столик и хорошо закрепить его, после чего рассмотреть образец на минимальном увеличении;
  • фокусировку микроскопа на образце следует производить с помощью ручки грубой настройки. Поскольку световой микроскоп позволяет наблюдать за всеми слоями исследуемого образца, то делать это можно с помощью все той же грубой настройки, как-бы «перемещаясь» между различными слоями препарата;
  • обнаружив требуемый для работы слой образца, необходимо повысить увеличение. Дальнейшие действия зависят от типа объектива светового микроскопа: не парфокальны — при каждой смене увеличения необходимо подстраивать резкость изображения; парфокальны — подстройка резкости не требуется, ибо при подъеме увеличения, изображение всегда остается в фокусе;
  • достигнув высокого увеличения исследуемого образца, использовать тонкую настройку фокуса, так как грубая пригодна только для контроля резкости при смене увеличения и работы на малых значениях увеличения.

Как видим, особых сложностей в работе со световым микроскопом нет. В заключении стоит отметить, что подготовка к работе и исследование образцов в монокулярных приборах для микроскопии ничем не отличается от работы с бинокулярными микроскопами, которые мы рассматривали в качестве примера.

Источник

Настройка освещения и фокусировка микроскопа

Качество изображения в значительной мере зависит также от правильного освещения. Существует несколько различных способов освещения препарата при микроскопии. Наиболее распространенным является способ установки света по Кёллеру:
1). устанавливают осветитель против зеркала микроскопа;
2). включают лампу осветителя и направляют свет на плоское (!) зеркало микроскопа;
3). помещают препарат на предметный столик микроскопа;
4). закрывают зеркало микроскопа листком белой бумаги и фокусируют на нем изображение нити лампы, передвигая патрон лампы в осветителе;
5). убирают лист бумаги с зеркала;
6). закрывают апертурную диафрагму конденсора. Перемещая зеркало и слегка передвигая патрон лампы, фокусируют изображение нити на апертурной диафрагме. Расстояние осветителя от микроскопа должно быть таким, чтобы изображение нити лампы было равно диаметру апертурной диафрагмы конденсора (наблюдать апертурную диафрагму можно с помощью плоского зеркала, помещенного с правой стороны основания микроскопа).
7). открывают апертурную диафрагму конденсора, уменьшают отверстие полевой диафрагмы осветителя и значительно уменьшают накал лампы;
8). при малом увеличении (10х), глядя в окуляр, получают резкое изображение препарата;
9). слегка поворачивая зеркало, переводят изображение полевой диафрагмы, которое имеет вид светлого пятна, в центр поля зрения. Опуская и поднимая конденсор, добиваются получения резкого изображения краев полевой диафрагмы в плоскости препарата (вокруг них может быть видна цветная каемка);
10). раскрывают полевую диафрагму осветителя до краев поля зрения, увеличивают накал нити лампы и слегка (на 1/3) уменьшают раскрытие апертурной диафрагмы конденсора;
11). при смене объектива необходимо проверить настройку света.

После окончания настройки света по Кёллеру нельзя изменять положение конденсора, раскрытие полевой и апертурной диафрагмы. Освещенность препарата можно регулировать только нейтральными светофильтрами или изменением накала лампы с помощью реостата. Излишнее открытие апертурной диафрагмы конденсора может привести к значительному снижению контраста изображения, а недостаточное — к значительному ухудшению качества изображения (появлению диффракционных колец). Для проверки правильности раскрытия апертурной диафрагмы необходимо удалить окуляр и, глядя в тубус, открыть ее таким образом, чтобы она закрывала светящееся поле на одну треть. Для правильного освещения препарата при работе с объективами малого увеличения (до 10х) необходимо отвинтить и снять верхнюю линзу конденсора.

Внимание! При работе с объективами, дающими большое увеличение — с сильными сухими (40х) и иммерсионными (90х) системами, чтобы не повредить фронтальную линзу, при фокусировке пользуются следующим приемом: наблюдая сбоку, опускают объектив макровинтом почти до соприкосновения с препаратом, затем, глядя в окуляр, макровинтом очень медленно поднимают объектив до появления изображения и с помощью микровинта производят окончательную фокусировку микроскопа.

Источник

Как правильно настроить окуляры в микроскопе?

Начинающий микроскопист часто сталкивается с проблемой настройки окуляров. При исследовании через бинокулярную насадку изображение получается размытым или поля зрения не сливаются в одно, и приходится смотреть только одним глазом. Все это сильно затрудняет работу, а к концу дня появляются жалобы на рези в глазах и головные боли. Как избежать этих проблем и можно ли самостоятельно настроить окуляры под особенности зрения отдельного человека?

Прежде всего, нужно сказать о том, что в исправном микроскопе для комфортной работы достаточно будет правильно установить межзрачковое расстояние и выставить окуляры. В бинокулярных насадках, как минимум один из тубусов можно регулировать.

Вначале настраивают расстояние между глазами. Для этого смотрят в фиксированный окуляр и с помощью винтовых регулировок (грубой и точной) настраивают изображение на минимальном увеличении (обычно оно составляет 10х). После этого смотрят во второй, подвижный, окуляр другим глазом и настраивают фокусировку путем перемещения тубуса. Необходимо добиться максимально четкого изображения.

Затем следует развести окуляры в стороны на ширину большую, чем расстояние между глазами. Далее, медленно сместить тубусы окуляров по направлению к центру и смотреть через них на образец на предметном столике. Вначале изображение будет видно каждым глазом по отдельности, но постепенно оно сольется в одну картинку. Положение, когда круги объединятся воедино и препарат будет виден как единое целое обоими глазами, является наилучшим межзрачковым расстоянием. Если же тубусы будут слишком близко расположены друг к другу, поле зрение будет значительно сужено, а рассматривание препарата затруднительно.

Несколько слов о маркировке, которую можно встретить на окулярах. Сбоку или сверху окуляра обычно стоит одно из увеличений, например, 10х, 15Х, 40х. Также указывается размер линейного поля зрения, например, 18 мм, 20 мм, 22 мм. Надпись на окуляре будет выглядеть следующим образом: 10х/22. Есть окуляры с вынесенным зрачком, с которыми можно работать, не снимая очков, в этом случае на них дополнительно наносится символическое изображение очков.

Однако это еще не все символы, которые можно встретить на окулярах. Возле цифровых показателей часто пишутся и буквенные.

Например, символ «К» обозначает, что окуляр относится к компенсационным, т.е. он удобен при проведении фото- и видеосъемки, потому что устраняет светящие круги вокруг рассматриваемых объектов.

Буква «Н» говорит о том, это окуляр системы Гюйгенса и предназначен для самых простых моделей микроскопов (школьных) и состоит из двух одиночных линз. Он обеспечивает небольшое поле зрения и не имеет регулировки хроматизма. Такие окуляры непригодны для фотографирования объектов.

Маркировка «WF» ( Wide Field ) обозначает широкоугольные окуляры. Это говорит о том, что окуляр обеспечивает поле зрения от 18 до 20 мм. На некоторых окулярах можно встретить несколько иную маркировку «EF» (extra Wide Field ) – ультраширокоугольные окуляры, которые дают поле зрения более 21 мм (максимально — до 25-30 мм).

Маркировка «Р» на окуляре обозначает, что он может использоваться с объективами плоского поля.

Производство микроэлектронных изделий (разного рода печатных плат, микросхем), а так же последующий контроль их качества происходит с помощью микроскопов. И, если для изготовления микроэлектронных изделий часто используют специальные установки, то для проведения контроля качества микроскоп еще нужно подобрать.

Флуоресцентные микроскопы позволяют получать увеличенное изображение тончайших препаратов органического и неорганического происхождения и увидеть то, что другие микроскопы показать неспособны.

Источник

Как настроить фокус микроскопа

1. При работе с объективом большого увеличения для создания достаточного освещения необходим искусственный свет. Для этого используют настольную лампу или специальный осветитель для микроскопа с матовой лампочкой. При работе с лампой накаливания необходимо между ней и микроскопом поместить лист бумаги. Поверните зеркало плоской поверхностью вверх так, чтобы свет, отражаясь, попадал в микроскоп.

2. Сфокусируйте конденсор, не убирая препарата с предметного столика. Поднимите конденсор так, чтобы расстояние между ним и предметным столиком было не более 5 мм. Глядя в микроскоп, поворачивайте винт грубой настройки до тех пор, пока объект не попадет в фокус. Теперь наводите фокус конденсора до тех пор, пока изображение лампы не нало-жится точно на препарат. Поместите конденсор несколько вне фокуса так, чтобы изображение лампы исчезло. Теперь освещение должно быть оптимальным. В конденсор вмонтирована диафрагма. Ею регулируют величину отверстия, через которое проходит свет. Это отверстие должно быть открыто как можно шире. Таким образом достигается максимальная четкость изображения.

3. Поворачивайте револьверную головку до тех пор, пока объектив большого увеличения (х40 или 4 мм) не попадет в паз. Если на малом увеличении фокус уже был установлен, то при повороте револьверной головки объектив большого увеличения автоматически установится приблизительно в фокусе. Фокусирование всегда производите движением объектива вверх с помощью винта тонкой настройки.

4. Если при движении объектива с линзами большого увеличения фокус не устанавливается, сделайте следующее: глядя на предметный столик сбоку, опускайте тубус микроскопа до тех пор, пока линза почти не коснется препарата. Следите за отражением линзы объектива на препарате и добивайтесь того, чтобы линза почти коснулась своего изображения.

5. Глядя в микроскоп и поворачивая винт тонкой настройки, медленно поднимайте объектив до тех пор, пока изображение не попадет в фокус.

Масляная иммерсия

Для того чтобы получить более сильное увеличение, чем при работе с обычным объективом большого увеличения (х400), необходимо использовать масляно-иммерсионную линзу. Способность линзы собирать свет в значительной степени усиливается, если между линзой объектива и покровным стеклом поместить жидкость. Жидкость должна иметь тот же коэффициент преломления, что и сама линза. Поэтому в качестве жидкости обычно используют кедровое масло.

1. Положите препарат на предметный столик и сфокусируйте изображение так же, как при работе с обычным большим увеличением. Вместо объектива с линзой большого увеличения установите объектив с масляно-иммерсионной линзой.

2. Капните каплю кедрового масла на покровное стекло непосредственно над исследуемым объектом.

3. Снова сфокусируйте изображение теперь уже под малым увеличением, затем поворотом револьверной головки установите объектив с масляно-иммерсионной линзой так, чтобы его кончик касался капли масла.

4. Глядя в микроскоп, очень осторожно сфокусируйте линзу с помощью винта тонкой настройки. Помните, что фокусная плоскость линзы находится всего в 1 мм от поверхности покровного стекла.

5. Кончив работу, сотрите с линзы масло мягкой тряпочкой.

Источник

Как настроить стоматологический микроскоп? Изучаем основы

  • 14 августа 2020
  • Просмотров: 1820
  • Автор: Ильин Григорий

Только начинаете работать с микроскопом и не знаете, как справиться с базовыми настройками? В этой статье мы разберём базовые вопросы, связанные с устройством, механикой и начальной настройкой прибора.

Голова микроскопа

Часть, обращённая к микроскопу ­– это объектив, а на вас «смотрят» бинокуляры. Начнём с их настройки.

Сначала включите освещение и настройте межзрачковое расстояние при помощи тумблера с делениями:

Когда вы смотрите в микроскоп, вы должны увидеть один большой круг, а не два отдельных или овал. На фото установлено межзрачковое расстояние 62 мм. Запомните комфортное вам значение: если с микроскопом работают несколько человек, вам нужно научиться быстро устанавливать индивидуальные настройки.

Бинокуляры

Переходим к бинокулярам. Сбоку указано начальное увеличение: чем оно больше, тем выше суммарное увеличение микроскопа.

Диоптрии

Следующий параметр, который мы видим – шкала диоптрийной коррекции. Если вы носите очки и хотите работать без них, установите шкалу в «+» или «-», в соответствии с вашим зрением. В данном случае «-1» – это близорукость -1.

Насечки, которые выдвигают наглазник. У всех разное поле зрения: например, если у вас оно широкое, то из-за выдвинутого наглазника вы увидите тёмные круги. По краям изображения не должно быть тёмных зон, так что в результате точной настройки наглазника вы увидите большой, яркий и чётко очерченный круг.

Фокусировка

Теперь настраиваем микроскоп на пациенте. Сначала нужно установить делитель на минимальное значение ­– в нашем случае на 0.4, затем двигать голову микроскопа вверх и вниз за рукоятки, пока зуб пациента не будет в фокусе.

Затем установите делитель на максимальное значение и снова двигайте голову микроскопа, пока не поймаете чёткий фокус. Таким образом мы настроили фокусировку крайних значений увеличения и все промежуточные положения делителя будут находиться в фокусе. Есть и такой способ: не двигать голову микроскопа, а педалью поднять или опустить кресло стоматологической установки.

Переходим к тонкой подстройке фокуса. На больших увеличениях вы видите фокусную плоскость слишком тонкой, как бумажный лист. С помощью тонкой настройки фокуса вы сможете опустить эту плоскость от устьев к апексу и обратно. Следите, чтобы эта настройка всегда находилась при начальной настройке микроскопа где-то посередине. Тогда можно смотреть в просвет канала, подняв или опустив фокус без движения головы микроскопа.

Рабочее увеличение

Остановимся подробнее на рабочих увеличениях и делителе. Общее увеличение микроскопа рассчитывается по формуле:

f объектива / f бинокуляров × делитель микроскопа × кратность увеличения бинокуляров

Фокусное расстояние бинокуляров на первом фото ­– 170, наштамповано прямо на корпусе. Фокусное расстояние объектива ­– 250, увеличение бинокуляров равно 12.5x. Таким образом, все постоянные значения в формуле выглядят так:

250 / 170 × 12.5 × значение делителя (или 18.3 x значение делителя)

Устанавливая делитель в положение 0.4, мы получаем семикратное общее увеличение. Значения делителя – 0.4, 0.6, 1.0, 1.6, 2.5. То есть у микроскопа есть пять ступеней увеличения.

На каком увеличении лучше работать? Если планируется эндодонтическое лечение, то штатное увеличение 1.0 на делителе позволит иметь достаточную глубину фокусного пространства. При повышении кратности увеличения толщина фокусной плоскости уменьшится. Если вам понадобится найти вход в канал и вы находитесь в одной интересующей вас точке, попробуйте повысить кратность до 1.6. А если вы, к примеру, покрасили трещину индикатором и хотите рассмотреть её характер, повышайте делитель до 2.5 и тонкой настройкой фокуса скользите вдоль трещины.

В ортопедии и имплантологии значение делителя редко превышает 0.6.

Свет

Ручка управления освещением находится на торце пантографического плеча.

  1. ручка настройки интерфейса MORA;
  2. настройка ирисовой мембраны.

Ирисовая мембрана – это оптическое устройство для увеличения фокусной плоскости, которое при этом крадёт освещённость поля. Тут решающую роль играет источник освещения. Обычно микроскопы комплектуются галогеновыми лампами: они дешевле, но и светят слабее. Необходимость в ирисовой мембране возникает как раз при больших увеличениях, когда нужно увеличить глубину резкого изображения пространства. С галогеновой лампой при закрытом положении мембраны освещённость поля падает до сумерек. Если же у вас ксеноновое освещение, ирисовая мембрана помогает на увеличениях от 1.6 до 2.5. При этом мощность лампы нужно увеличить практически до максимума.

У нашего микроскопа Carl Zeiss есть интерфейс MORA, который позволяет менять направление объектива примерно на 45° вправо и влево. При этом бинокуляры останутся в горизонтальном положении, то есть наклонять голову не нужно. Это имеет значение, если вы сидите в позе «на девять часов» при лечении нижних моляров или удалении восьмёрок.

На торце микроскопа находится световод, а кольцо с насечками управляет сфетофильтрами. В нашем случае их два: холодный зелёный для хирургии и оранжевый для работы со композитами.

Установка камеры

К голове микроскопа в качестве опции устанавливается делитель луча, на который можно установить камеру. У него тоже есть собственное значение фокусного расстояния. Почему это важно? Если значение f для бинокуляров равно 170, а значение f делителя луча ­– вдвое больше (340), то фотокамера увидит в два раза меньше, чем увидите вы.

Пример: зеркальная камера Canon 550D имеет неполный кадр, то есть её матрица охватывает ½ полного кадра. Она сфотографирует или снимет видео того, что вы видите по центру круга увеличения, а периферия останется за кадром. Здесь лучше подойдёт полнокадровая зеркала – например, Canon 5D Mark II. Поэтому при покупке камеры обращайте внимание на значение f делителя луча и бинокуляров.

Окно видоискателя лучше заклеить: в него падает свет кабинета и сбивает настройки скорости затвора.

Источник

Оцените статью