Настройка Прерываний От Таймера При Использовании Внешнего Кварца
Автор: mappy89, 3 сентября 2012 в AVR
Рекомендованные сообщения
Присоединяйтесь к обсуждению
Вы можете опубликовать сообщение сейчас, а зарегистрироваться позже. Если у вас есть аккаунт, войдите в него для написания от своего имени.
Примечание: вашему сообщению потребуется утверждение модератора, прежде чем оно станет доступным.
Сообщения
Начинаю знакомство с STM32 после AVRок. Решил сделать дрыганог через прерывание по таймеру. Плата Nucleo на базе STM32F446re, частота работы до 180МГц, собираю проект в CubeIDE.
Для опыта решил взять таймер6 (на самом деле мне всё равно какой) и вызывать прерывания по переполнению счётчика. По даташиту, его тактирование идёт от APB1, которая работает на 45МГц, с множителем Х2 (т.е получается 90МГЦ). Прескалер выставил в 89 (т.е счёт должен идти с частотой 1 МГц), каунтер на 1 (т.е по идее я должен получать прерывания с частотой 500КГц).
static void MX_TIM6_Init(void) < TIM_MasterConfigTypeDef sMasterConfig = <0>; htim6.Instance = TIM6; htim6.Init.Prescaler = 89; htim6.Init.CounterMode = TIM_COUNTERMODE_UP; htim6.Init.Period = 1; htim6.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_Base_Init(&htim6) != HAL_OK) < Error_Handler(); >sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim6, &sMasterConfig) != HAL_OK) < Error_Handler(); >> В обработчике прерывания вызываю смену состояния светодиода на PA5.
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) < if(htim->Instance == TIM6) //check if the interrupt comes from TIM1 < HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_5); >> Загрузив код и проверив логическим анализатором я получаю частоту 254,5Кгц. Меняя значения прескалера в меньшую сторону увеличения частоты добиться не могу (основной цикл пуст, в программе никаких вычислений кроме этого нет). Почему так происходит?
Микроконтроллер ATmega328p, внешний кварц 16МГц. Компилятор avr-gcc с оптимизацией O1
Написал код для управление шаговым двигателем. Работает так: требуемая скорость задается переменной STP1_ReqSpeed, дальше с частотой 100Гц срабатывает таймер TIM0, который высчитывает с какой частотой надо подавать сигналы на вход шагового драйвера. TIM1 работает в режиме частотно импульсной модуляции и по прерыванию меняет значение пина на противоположное.
Управление работает, скорость регулируется, но по какой то причине случаются пропуски шагов. Чаще всего во время ускорения. Количество пропусков от 0 до 4, обычно 2-3, длятся 32мс.
Из кода вырезал неиспользуемое. Заменить прерывания на аппаратный ШИМ возможности нет. Как убрать эти пропуски?
Осциллограммы:
Добрый день. Подскажите пожалуйста, как бы мне реализовать схему автоотключения (забытого включенного света).
Что есть: 12v аккумулятор, LED-лента, выключатель. Хочу собрать схему, при которой питание на LED-ленту будет подаваться не более чем N-минут.
Всё что находил — это схемы через мосфет и конденсатор но с тач-кнопкой, это не совсем то, т.к. необходимо срабатывание «таймера» при замыкании цепи и отключение таймера и света при размыкании цепи. Желательно, что бы потребление схемы было минимальным, а в идеале — размыкание всей цепи по таймеру.
Источник
Электроника для всех
Блог о электронике
AVR. Учебный Курс. Асинхронный режим таймера
Иногда полезно иметь в системе часы отсчитывающие время в секундах, да еще с высокой точностью. Часто для этих целей применяют специальные микросехмы RTC (Real Time Clock) вроде PCF8583. Вот только это дополнительный корпус, да и стоит она порой как сам МК, хотя можно обойтись и без нее. Тем более, что многие МК имеют встроенный блок RTC. В AVR его правда нет, но там есть асинхронный таймер, служащий полуфабрикатом для изготовления часиков.
Первым делом нам нужен часовой кварц на 32768Герц.
Почему кварц именно 32768Гц и почему его зовут часовым? Да все очень просто — 32768 является степенью двойки. Два в пятнадцатой степени. Поэтому пятнадцати разрядный счетчик, тикающий с частотой 32768 Гц, будет переполняться раз в секунду. Это дает возможность строить часы на обычной логической рассыпухе без каких либо заморочек. А в микроконтроллере AVR организовать часы с секундами можно почти без использования мозга, на рефлексах периферии.
Асинхронный режим таймера
Помните как работают таймеры? Тактовая частота с основного тактового генератора (RC внешняя или внутренняя, внешний кварц или внешний генератор) поступает на предделители, а с выхода предделителей уже щелкает значениями регистра TCNT. Либо сигнал на вход идет с счетного входа Тn и также щелкает регистром TCNT
Структура же Timer/Counter2 немного отличается от остальных — у него нет счетного входа, зато есть возможность задействовать собственный тактовый генератор.
Для этого на выводы TOSC2 и TOSC1 вешается кварцевый резонатор. Низкочастотный, обычно это часовой кварц на 32768Гц. На Pinboard он смонтирован справа от контроллера и подключается перемычками. Причем тактовая частота процессора должна быть выше как минимум в четыре раза. У нас тактовая от внутреннего генератора 8Мгц, так что нас это условие вообще не парит 🙂
Часовой кварц вешается просто на выводы. Без конденсаторов и каких либо заморочек.
И не нужно высчитывать количество тактов основного кварца, а если его нет, то заморачиваться на плавающую частоту встроенного RC генератора. Часовой кварц имеет куда более компактные размеры чем обычный кварц, да и стоит дешевле.
Также немаловажным является тот факт, что асинхронный таймер может тикать сам по себе, от часового кварца, ведь тактовая частота процессора ему не нужна, а это значит тактирование ядра контроллера (самое жручее, что у него есть) можно отключить, загнав процессор в спячку, существенно снизив потребление энергии и просыпаясь только по переполнению таймера (1-2 раза в секунду), чтобы записать новые показания времени.
Конфигурирование
Для включения надо всего лишь установить бит AS2 регистра ASSR — и все, таймер работает в асинхронном режиме. Но есть тут одна фича которая мне стоила много головняков в свое время. Дело в том, что при работе от своего кварца все внутренние регистры таймера начинают синхронизироваться по своему же кварцу. А он медленный и основная программа может менять уже введенное значение гораздо быстрей чем оно обработается таймером.
Т.е., например, предустановил ты значение TCNT2, таймер на своей 32кгц молотилке его еще даже прожевать не успел, а твой алгоритм уже пробежал и снова туда что то записал — в результате в TCNT2 наверняка попадет мусор. Чтобы этого не случилось запись буфферизируется. Т.е. это ты думаешь, что записал данные в TCNT2, но на самом деле они попадают во временный регистр и в счетный попадут только через три такта медленного генератора.
Также буфферизируется регистры сравнения OCR2 и регистр конфигурации TCCR2
Как узнать данные уже внеслись в таймер или висят в промежуточных ячейках? Да очень просто — по флагам в регистре ASSR. Это биты TCN2UB, OCR2UB и TCR2UB — каждый отвечает за свой регистр. Когда мы, например, записываем значение в TCNT2 то TCNUB становится 1, а как только наше число из промежуточного регистра таки перешло в реальный счетный регистр TCNT2 и начало уже тикать, то этот флаг автоматом сбрасывается.
Таким образом, в асинхронном режиме, при записи в регистры TCNT2, OCR2 и TCCR2 сначала нужно проверять флаги TCN2UB, OCR2UB и TCR2UB и запись проводить только если они равны нулю. Иначе результат может быть непредсказуемым.
Да, еще один важный момент — при переключениях между синхронным и асинхронным режимом значение в счетном регистре TCNT может побиться. Так что для надежности переключаемся так:
- Запрещаем прерывания от этого таймера
- Переключаемся в нужный режим (синхронный или асинхронный)
- Заново настраиваем таймер как нам нужно. Т.е. выставляем предустановку TCNT2 если надо, заново настраиваем TCCR2
- Если переключаемся в асинхронный режим, то ждем пока все флаги TCN2UB, OCR2UB и TCR2UB будут сброшены. Т.е. настройки применились и готовы к работе.
- Сбрасываем флаги прерываний таймера/счетчика. Т.к. при всех этих пертурбациях они могут случайно установиться
- Разрешаем прерывания от этого таймера
Несоблюдение этой последовательности ведет к непредсказуемым и трудно обнаруживаемым глюкам.
Спящие режимы и асинхронный таймер
Т.к. асинхронный таймер часто используется в разных сберегающих режимах, то тут возникает одна особенность, раскладывающая целое поле из граблей.
Суть в том, что таймер, работающий от медленного кварца, не успевает за главным процессором, а в том дофига зависимостей от периферии — те же прерывания, например. И когда проц спит, то эти зависимости не могут реализоваться, в результате возникают глюки вроде неработающих прерываний или поврежденных значений в регистрах. Так что логика работы с асинхронным таймером и спящим режимом должна быть построена таким образом, чтобы между пробуждением и сваливаеним в спячку асинхронный таймер успел отработать несколько своих тактов и выполнил все свои дела.
Примеры:
Контроллер использует режим энергосбережения и отключения ядра, а пробуждается по прерываниям от асинхронного таймера. Тут надо учитывать тот факт, что если мы будем изменять значения регистров TCNT2, OCR2 и TCCR2, то уход в спячку нужно делат ТОЛЬКО после того, как флаги TCN2UB, OCR2UB и TCR2UB упадут. Иначе получится такая лажа — асинхронный таймер еще не успел забрать данные из промежуточных регистров (он же медленный, в сотни раз медленней ядра), а ядро уже отрубилось. И ладно бы конфигурация новая не применилась, это ерунда.
Хуже то, что на время модификаций регистров TCNT или OCR блокируется работа блока сравнения, а значит если ядро уснет раньше, то блок сравнения так и не запустится — некому его включить будет. И у нас пропадет прерывание по сравнению. Что черевато тем, что событие мы прошляпим и будем их терять до следующего пробуждения из спячки.
А если контроллер будится прерыванием по сравнению? То он уснет окончательно. Опаньки!
Вот и лови такой глюк потом.
Так что перед уходом в режимы энергосбережения надо обязательно дать асинхронному таймеру прожевать введенные значения (если они были введены) и дождаться обнуления флагов.
Еще один прикол с асинхронным режимом и энергосбережением заключается в том, что подсистема прерываний при выходе из спячки стартует за 1 такт медленного генератора. Так что даже если мы ничего не меняли, то обратно в спячку сваливаться нельзя — не проснемся, т.к. прерывания не успеют запуститься.
Так что выход из спячки и засыпание по прерыванию асинхронного таймера должно быть в таком виде:
И длительность операции между Проснулись и Заснули НЕ ДОЛЖНА БЫТЬ МЕНЬШЕ чем один тик асинхронного таймера. Иначе анабиоз будет вечным. Можешь delay поставить, а можешь сделать как даташит советует:
- Проснулись
- Что то сделали нужное
- Ради прикола записали что то в любой из буфферизиуемых регистров. Например, в TCNT было 1, а мы еще раз 1 записали. Ничего не изменилось, но произошла запись, поднялся флаг TCN2UB который продержится гарантированно три такта медленного генератора.
- Подождали пока флаг упадет
- Уснули.
Также не рекомендуется при выходе из спячки сразу же читать значения TCNT — можно считать лажу. Лучше подождать один тик асинхронного таймера. Или сделать прикол с записью в регистр и ожиданием пока флаг спадет, как было написано выше.
Ну и последний, но важный, момент — после подачи питания, или выхода из глубокой спячки, с отключением не только ядра, а вообще всей периферии, пользоваться медленным генератором настоятельно рекомендуется не раньше чем через 1 секунду (не миллисекунду, а целая секунда!). Иначе генератор может еще быть нестабильным и в регистрах будет еще каша и мусор.
И, в завершение статьи, небольшой примерчик. Запуск асинхронного таймера на Atmega16 (Как полигон используется плата Pinboard)
Проект типовой, на базе диспетчера, одно лишь отличие — диспечтер переброшен на таймер0, чтобы освободить таймер2.
Сама процедура инициализации таймера в асинхронном режиме сделана в виде конечного автомата. При первом запуске она взводит бит асинхронного режима и делает приготовления, после запускает сама себя снова же, через диспетчер, чтобы дать возможность еще чему либо проскочить в очереди, не блокируюя систему на ожидание.
При последующих входах проверяются флаговые биты готовности регистров таймера. Если они все по нулям, то мы на всякий случай зануляем флаги прерывания таймера, чтобы не было глюков и ложных срабатываний, а потом разрешаем нужное нам прерывание. И выходим.
Спасибо. Вы потрясающие! Всего за месяц мы собрали нужную сумму в 500000 на хоккейную коробку для детского дома Аистенок. Из которых 125000+ было от вас, читателей EasyElectronics. Были даже переводы на 25000+ и просто поток платежей на 251 рубль. Это невероятно круто. Сейчас идет заключение договора и подготовка к строительству!
А я встрял на три года, как минимум, ежемесячной пахоты над статьями :)))))))))))) Спасибо вам за такой мощный пинок.
Источник