- Избавляемся от мусора в Java
- Что такое сборка мусора, зачем она нужна и как работает
- Структура памяти Java
- Сборка мусора: введение
- Сборка мусора: процесс
- Поколения объектов
- Что такое поколения объектов?
- Что такое Stop the World?
- Что такое гипотеза о поколениях?
- Преимущества использования поколений
- Недостатки использования поколений
- Сборка мусора: флаги
- Типы сборщиков мусора
- Инструменты мониторинга GC
- Что мониторить?
- Как мониторить сборщик мусора?
- Управление памятью Java
- Стек (Stack)
- Куча (Heap)
- Типы ссылок
- 1. Сильная ссылка
- 2. Слабая ссылка
- 3. Мягкая ссылка
- 4. Фантомная ссылка
- Ссылки на String
- Процесс сборки мусора
- Типы сборщиков мусора
- Советы и приемы
- Заключение
Избавляемся от мусора в Java
Что такое сборка мусора, зачем она нужна и как работает
Для работы любого приложения требуется память. Однако память компьютера ограничена. Поэтому важно ее очищать от старых неиспользуемых данных, чтобы освободить место для новых.
Кто занимается этой очисткой? Как и когда очищается память? Как выглядит структура памяти? Давайте разберем с этим подробнее.
Структура памяти Java
Память в Java состоит из следующих областей:
Структура памяти Java
Native Memory — вся доступная системная память.
Heap (куча) — часть native memory, выделенная для кучи. Здесь JVM хранит объекты. Это общее пространство для всех потоков приложения. Размер этой области памяти настраивается с помощью параметра -Xms (минимальный размер) и -Xmx (максимальный размер).
Stack (стек) — используется для хранения локальных переменных и стека вызовов метода. Для каждого потока выделяется свой стек.
Metaspace (метаданные) — в этой памяти хранятся метаданные классов и статические переменные. Это пространство также является общими для всех. Так как metaspace является частью native memory, то его размер зависит от платформы. Верхний предел объема памяти, используемой для metaspace, можно настроить с помощью флага MaxMetaspaceSize.
PermGen (Permanent Generation, постоянное поколение) присутствовало до Java 7. Начиная с Java 8 ему на смену пришла область Metaspace.
CodeCache (кэш кода) — JIT-компилятор компилирует часто исполняемый код, преобразует его в нативный машинный код и кеширует для более быстрого выполнения. Это тоже часть native memory.
Сборка мусора: введение
Что такое «мусор»? Мусором считается объект, который больше не может быть достигнут по ссылке из какого-либо объекта. Поскольку такие объекты больше не используются в приложении, то их можно удалить из памяти.
Например, на диаграмме ниже объект fruit2 может быть удален из памяти, поскольку на него нет ссылок.
Мусор
Что такое сборка мусора? Сборка мусора — это процесс автоматического управления памятью. Освобождение памяти (путем очистки мусора) выполняется автоматически специальным компонентом JVM — сборщиком мусора (Garbage Collector, GC). Нам, как программистам, нет необходимости вмешиваться в процесс сборки мусора.
Источник: Oracle.com
Сборка мусора: процесс
Для сборки мусора используется алгоритм пометок (Mark & Sweep). Этот алгоритм состоит из трех этапов:
Mark (маркировка). На первом этапе GC сканирует все объекты и помечает живые (объекты, которые все еще используются). На этом шаге выполнение программы приостанавливается. Поэтому этот шаг также называется «Stop the World» .
Sweep (очистка). На этом шаге освобождается память, занятая объектами, не отмеченными на предыдущем шаге.
Compact (уплотнение). Объекты, пережившие очистку, перемещаются в единый непрерывный блок памяти. Это уменьшает фрагментацию кучи и позволяет проще и быстрее размещать новые объекты.
Mark & Sweep GC
Поколения объектов
Что такое поколения объектов?
Для оптимизации сборки мусора память кучи дополнительно разделена на четыре области. В эти области объекты помещаются в зависимости от их возраста (как долго они используются в приложении).
Young Generation (молодое поколение). Здесь создаются новые объекты. Область young generation разделена на три части раздела: Eden (Эдем), S0 и S1 (Survivor Space — область для выживших).
Old Generation (старое поколение). Здесь хранятся давно живущие объекты.
Поколения в куче
Что такое Stop the World?
Когда запускается этап mark, работа приложения останавливается. После завершения mark приложение возобновляет свою работу. Любая сборка мусора — это «Stop the World».
Что такое гипотеза о поколениях?
Как уже упоминалось ранее, для оптимизации этапов mark и sweep используются поколения. Гипотеза о поколениях говорит о следующем:
Большинство объектов живут недолго.
Если объект выживает, то он, скорее всего, будет жить вечно.
Этапы mark и sweep занимают меньше времени при большом количестве мусора. То есть маркировка будет происходить быстрее, если анализируемая область небольшая и в ней много мертвых объектов.
Таким образом, алгоритм сборки мусора, использующий поколения, выглядит следующим образом:
Сборка мусора поколениями
Новые объекты создаются в области Eden. Области Survivor (S0, S1) на данный момент пустые.
Когда область Eden заполняется, происходит минорная сборка мусора (Minor GC). Minor GC — это процесс, при котором операции mark и sweep выполняются для young generation (молодого поколения).
После Minor GC живые объекты перемещаются в одну из областей Survivor (например, S0). Мертвые объекты полностью удаляются.
По мере работы приложения пространство Eden заполняется новыми объектами. При очередном Minor GC области young generation и S0 очищаются. На этот раз выжившие объекты перемещаются в область S1, и их возраст увеличивается (отметка о том, что они пережили сборку мусора).
При следующем Minor GC процесс повторяется. Однако на этот раз области Survivor меняются местами. Живые объекты перемещаются в S0 и у них увеличивается возраст. Области Eden и S1 очищаются.
Объекты между областями Survivor копируются определенное количество раз (пока не переживут определенное количество Minor GC) или пока там достаточно места. Затем эти объекты копируются в область Old.
Major GC. При Major GC этапы mark и sweep выполняются для Old Generation. Major GC работает медленнее по сравнению с Minor GC, поскольку старое поколение в основном состоит из живых объектов.
Преимущества использования поколений
Minor GC происходит в меньшей части кучи (
2/3 от кучи). Этап маркировки эффективен, потому что область небольшая и состоит в основном из мертвых объектов.
Недостатки использования поколений
В каждый момент времени одно из пространств Survivor (S0 или S1) пустое и не используется.
Сборка мусора: флаги
В этом разделе приведены некоторые важные флаги, которые можно использовать для настройки процесса сборки мусора.
Флаг
Описание
Первоначальный размер кучи
Максимальный размер куча
Отношение размера Old Generation к Young Generation
Отношение размера Eden к Survivor
Возраст объекта, когда объект перемещается из области Survivor в область Old Generation
Типы сборщиков мусора
Сборщик мусора
Описание
Преимущества
Когда использовать
Флаги для включения
Использует один поток.
Эффективный, т.к. нет накладных расходов на взаимодействие потоков.
Работа с небольшими наборами данных.
Использует несколько потоков.
Многопоточность ускоряет сборку мусора.
В приоритете пиковая производительность.
Допустимы паузы при GC в одну секунду и более.
Работа со средними и большими наборами данных.
Для приложений, работающих на многопроцессорном или многопоточном оборудовании.
Выполняет некоторую тяжелую работу параллельно с работой приложения.
Может использоваться как на небольших системах, так и на больших с большим количеством процессоров и большим количеством памяти.
Когда время отклика важнее пропускной способности.
Паузы GC должны быть меньше одной секунды.
Выполняет всю тяжелую работу параллельно с работой приложения.
В приоритете время отклика.
Сборщики мусора в Java
Инструменты мониторинга GC
Что мониторить?
Частота запуска сборки мусора. Так как GC вызывает «stop the world», поэтому чем время сборки мусора меньше, тем лучше.
Длительность одного цикла сборки мусора.
Как мониторить сборщик мусора?
Для мониторинга можно использовать следующие инструменты:
Для включения логирования событий сборщика мусора добавьте следующие параметры JVM:
Источник
Управление памятью Java
Это глубокое погружение в управление памятью Java позволит расширить ваши знания о том, как работает куча, ссылочные типы и сборка мусора.
Вероятно, вы могли подумать, что если вы программируете на Java, то вам незачем знать о том, как работает память. В Java есть автоматическое управление памятью, красивый и тихий сборщик мусора, который работает в фоновом режиме для очистки неиспользуемых объектов и освобождения некоторой памяти.
Поэтому вам, как программисту на Java, не нужно беспокоиться о таких проблемах, как уничтожение объектов, поскольку они больше не используются. Однако, даже если в Java этот процесс выполняется автоматически, он ничего не гарантирует. Не зная, как устроен сборщик мусора и память Java, вы можете создать объекты, которые не подходят для сбора мусора, даже если вы их больше не используете.
Поэтому важно знать, как на самом деле работает память в Java, поскольку это дает вам преимущество в написании высокопроизводительных и оптимизированных приложений, которые никогда не будут аварийно завершены с ошибкой OutOfMemoryError . С другой стороны, когда вы окажетесь в плохой ситуации, вы сможете быстро найти утечку памяти.
Для начала давайте посмотрим, как обычно организована память в Java:
Структура памяти
Обычно память делится на две большие части: стек и куча. Имейте в виду, что размер типов памяти на этом рисунке не пропорционален реальному размеру памяти. Куча — это огромный объем памяти по сравнению со стеком.
Стек (Stack)
Стековая память отвечает за хранение ссылок на объекты кучи и за хранение типов значений (также известных в Java как примитивные типы), которые содержат само значение, а не ссылку на объект из кучи.
Кроме того, переменные в стеке имеют определенную видимость, также называемую областью видимости. Используются только объекты из активной области. Например, предполагая, что у нас нет никаких глобальных переменных (полей) области видимости, а только локальные переменные, если компилятор выполняет тело метода, он может получить доступ только к объектам из стека, которые находятся внутри тела метода. Он не может получить доступ к другим локальным переменным, так как они не выходят в область видимости. Когда метод завершается и возвращается, верхняя часть стека выталкивается, и активная область видимости изменяется.
Возможно, вы заметили, что на картинке выше отображено несколько стеков памяти. Это связано с тем, что стековая память в Java выделяется для каждого потока. Следовательно, каждый раз, когда поток создается и запускается, он имеет свою собственную стековую память и не может получить доступ к стековой памяти другого потока.
Куча (Heap)
Эта часть памяти хранит в памяти фактические объекты, на которые ссылаются переменные из стека. Например, давайте проанализируем, что происходит в следующей строке кода:
Ключевое слово new несет ответственность за обеспечение того, достаточно ли свободного места на куче, создавая объект типа StringBuilder в памяти и обращаясь к нему через «Builder» ссылки, которая попадает в стек.
Для каждого запущенного процесса JVM существует только одна область памяти в куче. Следовательно, это общая часть памяти независимо от того, сколько потоков выполняется. На самом деле структура кучи немного отличается от того, что показано на картинке выше. Сама куча разделена на несколько частей, что облегчает процесс сборки мусора.
Максимальные размеры стека и кучи не определены заранее — это зависит от работающей JVM машины. Позже в этой статье мы рассмотрим некоторые конфигурации JVM, которые позволят нам явно указать их размер для запускаемого приложения.
Типы ссылок
Если вы внимательно посмотрите на изображение структуры памяти, вы, вероятно, заметите, что стрелки, представляющие ссылки на объекты из кучи, на самом деле относятся к разным типам. Это потому, что в языке программирования Java используются разные типы ссылок: сильные, слабые, мягкие и фантомные ссылки. Разница между типами ссылок заключается в том, что объекты в куче, на которые они ссылаются, имеют право на сборку мусора по различным критериям. Рассмотрим подробнее каждую из них.
1. Сильная ссылка
Это самые популярные ссылочные типы, к которым мы все привыкли. В приведенном выше примере со StringBuilder мы фактически храним сильную ссылку на объект из кучи. Объект в куче не удаляется сборщиком мусора, пока на него указывает сильная ссылка или если он явно доступен через цепочку сильных ссылок.
2. Слабая ссылка
Попросту говоря, слабая ссылка на объект из кучи, скорее всего, не сохранится после следующего процесса сборки мусора. Слабая ссылка создается следующим образом:
Хорошим вариантом использования слабых ссылок являются сценарии кеширования. Представьте, что вы извлекаете некоторые данные и хотите, чтобы они также были сохранены в памяти — те же данные могут быть запрошены снова. С другой стороны, вы не уверены, когда и будут ли эти данные запрашиваться снова. Таким образом, вы можете сохранить слабую ссылку на него, и в случае запуска сборщика мусора, возможно, он уничтожит ваш объект в куче. Следовательно, через некоторое время, если вы захотите получить объект, на который вы ссылаетесь, вы можете внезапно получить null значение. Хорошей реализацией сценариев кеширования является коллекция WeakHashMap . Если мы откроем WeakHashMap класс в Java API, мы увидим, что его записи фактически расширяют WeakReference класс и используют его поле ref в качестве ключа отображения ( Map) :
После сбора мусора ключа из WeakHashMap вся запись удаляется из карты.
3. Мягкая ссылка
Эти типы ссылок используются для более чувствительных к памяти сценариев, поскольку они будут собираться сборщиком мусора только тогда, когда вашему приложению не хватает памяти. Следовательно, пока нет критической необходимости в освобождении некоторого места, сборщик мусора не будет касаться легко доступных объектов. Java гарантирует, что все объекты, на которые имеются мягкие ссылки, будут очищены до того, как будет выдано исключение OutOfMemoryError . В документации Javadocs говорится, что «все мягкие ссылки на мягко достижимые объекты гарантированно очищены до того, как виртуальная машина выдаст OutOfMemoryError».
Подобно слабым ссылкам, мягкая ссылка создается следующим образом:
4. Фантомная ссылка
Используется для планирования посмертных действий по очистке, поскольку мы точно знаем, что объекты больше не живы. Используется только с очередью ссылок, поскольку .get() метод таких ссылок всегда будет возвращаться null . Эти типы ссылок считаются предпочтительными для финализаторов.
Ссылки на String
Ссылки на тип String в Java обрабатываются немного по- другому. Строки неизменяемы, что означает, что каждый раз, когда вы делаете что-то со строкой, в куче фактически создается другой объект. Для строк Java управляет пулом строк в памяти. Это означает, что Java сохраняет и повторно использует строки, когда это возможно. В основном это верно для строковых литералов. Например:
При запуске этот код распечатывает следующее:
Strings are equal
Следовательно, оказывается, что две ссылки типа String на одинаковые строковые литералы фактически указывают на одни и те же объекты в куче. Однако это не действует для вычисляемых строк. Предположим, что у нас есть следующее изменение в строке // 1 приведенного выше кода.
Strings are different
В этом случае мы фактически видим, что у нас есть два разных объекта в куче. Если учесть, что вычисляемая строка будет использоваться довольно часто, мы можем заставить JVM добавить ее в пул строк, добавив .intern() метод в конец вычисляемой строки:
При добавлении вышеуказанного изменения создается следующий результат:
Процесс сборки мусора
Как обсуждалось ранее, в зависимости от типа ссылки, которую переменная из стека содержит на объект из кучи, в определенный момент времени этот объект становится подходящим для сборщика мусора.
Объекты, подходящие для сборки мусора
Например, все объекты, отмеченные красным цветом, могут быть собраны сборщиком мусора. Вы можете заметить, что в куче есть объект, который имеет строгие ссылки на другие объекты, которые также находятся в куче (например, это может быть список, который имеет ссылки на его элементы, или объект, имеющий два поля типа, на которые есть ссылки). Однако, поскольку ссылка из стека потеряна, к ней больше нельзя получить доступ, так что это тоже мусор.
Чтобы углубиться в детали, давайте сначала упомянем несколько вещей:
Этот процесс запускается автоматически Java, и Java решает, запускать или нет этот процесс.
На самом деле это дорогостоящий процесс. При запуске сборщика мусора все потоки в вашем приложении приостанавливаются (в зависимости от типа GC, который будет обсуждаться позже).
На самом деле это более сложный процесс, чем просто сбор мусора и освобождение памяти.
Несмотря на то, что Java решает, когда запускать сборщик мусора, вы можете явно вызвать System.gc() и ожидать, что сборщик мусора будет запускаться при выполнении этой строки кода, верно?
Это ошибочное предположение.
Вы только как бы просите Java запустить сборщик мусора, но, опять же, Java решать, делать это или нет. В любом случае явно вызывать System.gc() не рекомендуется.
Поскольку это довольно сложный процесс и может повлиять на вашу производительность, он реализован разумно. Для этого используется так называемый процесс «Mark and Sweep». Java анализирует переменные из стека и «отмечает» все объекты, которые необходимо поддерживать в рабочем состоянии. Затем все неиспользуемые объекты очищаются.
Так что на самом деле Java не собирает мусор. Фактически, чем больше мусора и чем меньше объектов помечены как живые, тем быстрее идет процесс. Чтобы сделать это еще более оптимизированным, память кучи на самом деле состоит из нескольких частей. Мы можем визуализировать использование памяти и другие полезные вещи с помощью JVisualVM, инструмента, поставляемого с Java JDK. Единственное, что вам нужно сделать, это установить плагин с именем Visual GC, который позволяет увидеть, как на самом деле структурирована память. Давайте немного увеличим масштаб и разберем общую картину:
Поколения памяти кучи
Когда объект создается, он размещается в пространстве Eden (1). Поскольку пространство Eden не такое уж большое, оно заполняется довольно быстро. Сборщик мусора работает в пространстве Eden и помечает объекты как живые.
Если объект выживает в процессе сборки мусора, он перемещается в так называемое пространство выжившего S0(2). Во второй раз, когда сборщик мусора запускается в пространстве Eden, он перемещает все уцелевшие объекты в пространство S1(3). Кроме того, все, что в настоящее время находится на S0(2), перемещается в пространство S1(3).
Если объект выживает в течение X раундов сборки мусора (X зависит от реализации JVM, в моем случае это 8), скорее всего, он выживет вечно и перемещается в пространство Old(4).
Принимая все сказанное выше, если вы посмотрите на график сборщика мусора (6), каждый раз, когда он запускается, вы можете увидеть, что объекты переключаются на пространство выживших и что пространство Эдема увеличивалось. И так далее. Старое поколение также может быть обработано сборщиком мусора, но, поскольку это большая часть памяти по сравнению с пространством Eden, это происходит не так часто. Метапространство (5) используется для хранения метаданных о ваших загруженных классах в JVM.
Представленное изображение на самом деле является приложением Java 8. До Java 8 структура памяти была немного другой. Метапространство на самом деле называется PermGen область. Например, в Java 6 это пространство также хранит память для пула строк. Поэтому, если в вашем приложении Java 6 слишком много строк, оно может аварийно завершить работу.
Типы сборщиков мусора
Фактически, JVM имеет три типа сборщиков мусора, и программист может выбрать, какой из них следует использовать. По умолчанию Java выбирает используемый тип сборщика мусора в зависимости от базового оборудования.
1. Serial GC (Последовательный сборщик мусора) — однониточный коллектор. В основном относится к небольшим приложениям с небольшим использованием данных. Можно включить, указав параметр командной строки: -XX:+UseSerialGC.
2. Parallel GC (Параллельный сборщик мусора) — даже по названию, разница между последовательным и параллельным будет заключаться в том, что параллельный сборщик мусора использует несколько потоков для выполнения процесса сбора мусора. Этот тип GC также известен как сборщик производительности. Его можно включить, явно указав параметр: -XX:+UseParallelGC.
3. Mostly concurrent GC (В основном параллельный сборщик мусора). Если вы помните, ранее в этой статье упоминалось, что процесс сбора мусора на самом деле довольно дорогостоящий, и когда он выполняется, все потоки приостанавливаются. Однако у нас есть в основном параллельный тип GC, который утверждает, что он работает одновременно с приложением. Однако есть причина, по которой он «в основном» параллелен. Он не работает на 100% одновременно с приложением. Есть период времени, на который цепочки приостанавливаются. Тем не менее, пауза делается как можно короче для достижения наилучшей производительности сборщика мусора. На самом деле существует 2 типа в основном параллельных сборщиков мусора:
3.1 Garbage First — высокая производительность с разумным временем паузы приложения. Включено с опцией: -XX:+UseG1GC.
3.2 Concurrent Mark Sweep (Параллельное сканирование отметок) — время паузы приложения сведено к минимуму. Он может быть использован с помощью опции: -XX:+UseConcMarkSweepGC . Начиная с JDK 9, этот тип GC объявлен устаревшим.
Примечание переводчика. Информация про сборщики мусора для различных версий Java приведена в переводе:
Советы и приемы
Чтобы минимизировать объем памяти, максимально ограничьте область видимости переменных. Помните, что каждый раз, когда выскакивает верхняя область видимости из стека, ссылки из этой области теряются, и это может сделать объекты пригодными для сбора мусора.
Явно устанавливайте в null устаревшие ссылки. Это сделает объекты, на которые ссылаются, подходящими для сбора мусора.
Избегайте финализаторов (finalizer). Они замедляют процесс и ничего не гарантируют. Фантомные ссылки предпочтительны для работы по очистке памяти.
Не используйте сильные ссылки там, где можно применить слабые или мягкие ссылки. Наиболее распространенные ошибки памяти — это сценарии кэширования, когда данные хранятся в памяти, даже если они могут не понадобиться.
JVisualVM также имеет функцию создания дампа кучи в определенный момент, чтобы вы могли анализировать для каждого класса, сколько памяти он занимает.
Настройте JVM в соответствии с требованиями вашего приложения. Явно укажите размер кучи для JVM при запуске приложения. Процесс выделения памяти также является дорогостоящим, поэтому выделите разумный начальный и максимальный объем памяти для кучи. Если вы знаете его, то не имеет смысла начинать с небольшого начального размера кучи с самого начала, JVM расширит это пространство памяти. Указание параметров памяти выполняется с помощью следующих параметров:
Начальный размер кучи -Xms512m — установите начальный размер кучи на 512 мегабайт.
Максимальный размер кучи -Xmx1024m — установите максимальный размер кучи 1024 мегабайта.
Размер стека потоков -Xss1m — установите размер стека потоков равным 1 мегабайту.
Размер поколения -Xmn256m — установите размер поколения 256 мегабайт.
Если приложение Java выдает ошибку OutOfMemoryError и вам нужна дополнительная информация для обнаружения утечки, запустите процесс с –XX:HeapDumpOnOutOfMemory параметром, который создаст файл дампа кучи, когда эта ошибка произойдет в следующий раз.
Используйте опцию -verbose:gc , чтобы получить вывод процесса сборки мусора. Каждый раз, когда происходит сборка мусора, будет генерироваться вывод.
Заключение
Знание того, как организована память, дает вам преимущество в написании хорошего и оптимизированного кода с точки зрения ресурсов памяти. Преимущество заключается в том, что вы можете настроить свою работающую JVM, предоставив различные конфигурации, наиболее подходящие для запуска вашего приложения. Выявление и устранение утечек памяти — это очень просто, если использовать правильные инструменты.
Источник