- BMS: балансировка (на простейшем али-примере)
- Не работает балансировка bms
- BMS, балансировка. Спасаем электросамокат от взрыва. Часть 2.
- Выбрать электросамокат с качественным аккумулятором можно на Rusamokat.ru
- BMS – обзор контроллеров защиты аккумуляторов
- Что такое BMS?
- Принцип работы BMS-контроллеров
- Защита по току (от короткого замыкания / превышения допустимого тока)
- Защита по напряжению (от перезаряда или переразряда)
- Защита по температуре
- Алгоритм работы заряда батарей
- Что такое балансировка?
- Активные и пассивные балансиры
BMS: балансировка (на простейшем али-примере)
Простейшая возможная bms с балансировкой — это 2s.
Рассмотрим на примере
Два обведённых «жирных» smd-резистора 43 ома — элементы, на которых выделяется энергия вместо заливания в «перезаряженную» секцию. Чтобы оценить
1) ток балансировки — разделим 4.2V / 42Ohm = 100mA
2) тепловыделение — (4.2V)^2 / 42Ohm = 0.42W
С учётом наличия двух резисторов — да. Только не очень понятно, зачем одновременно греть оба резистора). А много это или мало, ток 0.1A и тепловыделение
С учётом того, что при напряжении банок 4.17V — начале балансировки — ток зарядки с ЗУ «2A» составляет заведомо не больше 0.2A, а может быть и в несколько раз меньше — эта величина вполне адекватная. Грубо говоря, секция с большим напряжением будет заблокирована для зарядки начиная с напряжения 4.17, что позволит второй секции подтянуться к ней. Однако, балансировка вообще не будет работать
1) если зарядное устройство не дотянет «убежавшую вверх» секцию до этого напряжения, а отключится раньше
2) разбаланс настолько велик, что даже при «идеальном» ЗУ 8.40V зарядка остановится на цифрах типа «4.16+4.24»
Относительно тепловыделения — оно небольшое, но 0.4W нужно умножить на 10 — типичное число (разбалансированных) секций в bms ЭТ. И получится 4W — а это уже требует продуманного теплоотвода. Поэтому обычно ставятся резисторы номиналом в 2-3 раза выше, при этом ток и тепловыделение падают в соответствующее число раз.
Думается, что теплоотвод при желании вполне можно продумать, поставить датчик температуры.
Резисторы подпаять «как-то так»)
Но кажется, что более интересный вопрос — это значение
Как будто полный заряд «лития» — 5.0, а не 4.2. Почему так.
Источник
Не работает балансировка bms
У продавца в отзывах я находил такие комментарии по поводу этого БМС, что он не балансирует АКБ, при заряде все АКБ имеют разные пороги и полностью не заряжаются. Я так же решил понаблюдать из за чего возникает эта проблема и начал с самого начала. А начало заключалось в подаче напряжение заряда которое равно напряжению конечного заряда литиевых АКБ, а именно 4*4,2 Вольта 16.8 Вольт. Но начинал я с более мягкого напряжения на мой взгляд, это порог 15.8 Вольт.
Да BMS вела себя не адекватно а на приборах был винегрет, то есть на всех АКБ напряжение было разным и даже близко на начальном этапе не приравнивалась к друг другу. Все изменилось только на входном напряжении 17 Вольт. Тут уже стало проявляться что-то похожее на работу и балансировку BMS АКБ. Разбег не превышал уже 5 сотых, но все равно, он был! Подождав пол дня я увидел что АКБ которые успели зарядится на 100% держали максимальное напряжение, в то время как на некоторых банках оно было гораздо ниже и не поднималось! При этом суммарное напряжение банок было правильным. Это меня навело на мысль, что балансировка ячеек началось именно в момент повышения мной входного зарядного напряжения, ток при этом был максимальный до 3А.
И я решил на свой страх и риск завысить входное напряжение и посмотреть что это даст. повышал я напряжение на 2 десятых с начало до 17.2 , 17.4, 17.6 В И с каждым повышением по входу или выходу BMS я видел что напряжение на банках которые были якобы заряжены понемногу снижалось, в то время как на тех банках которые были в не до заряде наоборот послышатся.
Добравшись до порога в 17.6В я решил это все дело на свой страх и риск оставить до утра.
Утром первым делом проверил что АКБ не перегрелись и не вышли из строя, а BMS не сгорел, увидев какие напряжения на банках, я решил дожидаться вечера чтобы быть полностью уверенным в полученных мной данных, и только после этого решил снять данное видео
Автор Н Дмитрий
Источник
BMS, балансировка. Спасаем электросамокат от взрыва. Часть 2.
ПРИНЦИП РАБОТЫ BMS-КОНТРОЛЛЕРОВ
Давайте посмотрим, по какому принципу BMS системы выполняют своё предназначение.
Структурно на плате можно выделить:
- микросхема защиты
- аналоговая обвязка (для определения тока/балансировки аккумуляторов)
- силовые транзисторы (для отключения нагрузки)
Рассмотрим подробнее работу каждой из защит.
ЗАЩИТА ПО ТОКУ (ОТ КОРОТКОГО ЗАМЫКАНИЯ / ПРЕВЫШЕНИЯ ДОПУСТИМОГО ТОКА)
Существует множество вариантов узнать, какой ток течёт по линии. Самый распространённый – шунт (измерение падения напряжения на резисторе с низким сопротивлением и большой мощностью), но он требует большой точности измерений и весьма громоздкий. Метод с измерением на основе эффекта Холла лишён этих недостатков, но стоит дороже, поэтому самый распространённый метод определения КЗ на линии – измерение напряжения, которое проседает практически до нуля в режиме КЗ. Современные контроллеры позволяют сделать это в очень короткий промежуток времени, за который ущерб не нанесётся ни подключенному устройству, ни самому аккумулятору. Но защита по току может функционировать и на шунте – ведь в случае BMS тут не нужно точное измерение, важен лишь переход падения напряжения через определённый порог. Как только событие наступает, контроллер сразу же отключает нагрузку при помощи транзисторов.
Выбрать электросамокат с качественным аккумулятором можно на Rusamokat.ru
ЗАЩИТА ПО НАПРЯЖЕНИЮ (ОТ ПЕРЕЗАРЯДА ИЛИ ПЕРЕРАЗРЯДА)
С этой защитой разобраться попроще, так как измерение напряжения легко можно сделать, используя аналогово-цифровой преобразователь. Но и тут есть некая специфика – стоит отметить, что если контроллер защищает большую сборку из последовательно соединённых аккумуляторов, то обычно он меряет напряжение каждой банки персонально, так как ввиду мельчайших различий в элементах они имеют мельчайшие же различия по ёмкости, что выливается в неравномерный разряд и возможность высадить «в ноль» отдельный элемент.Некоторые системы не подключают нагрузку, не дождавшись дозаряда аккумулятора до определённого напряжения после срабатывания триггера по переразряду, то есть недостаточно подзарядить элемент пару минут, чтобы он поработал ещё хоть малое время – обычно необходимо зарядить до номинального напряжения (3.6 – 4.2В, в зависимости от типа аккумулятора).
ЗАЩИТА ПО ТЕМПЕРАТУРЕ
Редко встречается в современных устройствах, но не зря большинство аккумуляторов для телефонов оборудовано третьим контактом – это и есть вывод терморезистора (резистора, имеющего чёткую зависимость сопротивления от окружающей температуры). Обычно перегрев не наступает сам собой и раньше успевают сработать другие виды защиты – например, перегрев может быть вызван коротким замыканием.
АЛГОРИТМ РАБОТЫ ЗАРЯДА БАТАРЕЙ
Зарядка литиевых аккумуляторов происходит в 2 этапа: CC (constant current, постоянный ток) и CV (constantvoltage, постоянное напряжение). В течение первого этапа зарядное устройство постепенно поднимает напряжение таким образом, чтобы заряжаемый элемент брал заданный ток (обычное рекомендованное значение равно 1 ёмкости аккумулятора). Когда напряжение достигает 4В, зарядка переходит на второй этап и поддерживает напряжение 4.2В на батарее. Когда элемент практически перестанет брать ток, он считается заряженным. На практике, алгоритм можно реализовать и при помощи обычного лабораторного блока питания, но зачем, если есть специализированные микросхемы, заранее «заточенные» под выполнение этой последовательности действий, например, самая известная из них – TP4056, способна заряжать током до 1А.
ЧТО ТАКОЕ БАЛАНСИРОВКА?
Напоследок мы оставили самую интересную функцию BMS – функцию балансировки элементов многобаночного аккумулятора, которыми как раз и комплектуются электросамокаты.
Итак, что же такое балансировка?
Сам процесс её подразумевает выравнивание напряжений на элементах батареи, соединённых последовательно для повышения общего напряжения сборки. Из-за небольших отличиях в ёмкости батарей они заряжаются за немного разное время, и когда одна банка может уже достигнуть апогея зарядки, остальные могут ещё недобрать заряд.При разряде такой сборки большими токами наиболее заряженные элементы по закону Ома возьмут на себя больший ток (при равном сопротивлении ток будет зависеть от напряжения, которое находится в знаменателе формулы), что вызовет их ускоренный износ и может вывести элемент из строя. Для того, чтобы избежать этой проблемы, применяют аккумуляторные балансиры – специальные устройства, выравнивающие напряжения на банках до одного уровня.
АКТИВНЫЕ И ПАССИВНЫЕ БАЛАНСИРЫ
Активные балансиры производят балансировку уже при зарядке – зарядив одну банку сборки, они отключают её от питания, продолжая заряжать вторую. Как яркий пример такого устройства – популярное среди моделистов ЗУ Imax B6, в режиме Balance оно сразу проверяет напряжения индивидуально на каждой банке и справляется с этим на отлично.
Пассивные балансиры наоборот, разряжают элементы до одного значения малыми токами через резисторы. Их основной плюс – они не требуют внешнего питания, а также являются более точными за счёт применения аналоговых комплектующих (и более дешёвыми, так как не содержат сложных микросхем).
В завершении скажем, что производителями BMS — плат в большинстве случаев разрабатываются и мобильные приложения для оперативного отслеживания состояния аккумулятора.
На самом деле, платы bms стоят везде, в любых самокатах и гироскутерах, на любом электротранспорте. Но! Везде стоят очень урезанные по функционалу платы, в которых нет функции балансировки (а это очень важно для предотвращения разбега уровня заряда в параллелях и последующего сокращения общей емкости батареи).
Но штатная бмс выполняет только базовые функции, а именно:
1. Отключение всей батареи от зарядки при полном заряде хотя бы одного из элементов (параллелей);
2. Отключение батареи при разряде, если напряжение на одной из параллелей упало ниже критического значения (обычно это 3В, но некоторые платы отключают при 3.2-3.3, а некоторые при 2.7).
3. Отключение батареи в случае короткого замыкания.
Вот, собственно, и всё, что делают все штатные платы BMS.
В случае отсутствия платы совсем — гироскутеры и самокаты начали бы гореть и взрываться уже спустя короткое время после начала эксплуатации. Совсем без bms эксплуатировать li-ion, li-po и другие батареи на основе лития нельзя, т.к.перезаряд гарантированнл вызывает пожар, а то и взрыв, а переразряд очень быстро убьет батарею без шансов на восстановление. А короткое замыкание также чревато возгоранием и взрывом.
Если эта статья оказалась для вас полезной, не стесняйтесь поставить лайк и поделиться с друзьями в соцсетях.
Источник
BMS – обзор контроллеров защиты аккумуляторов
В наш современный век всеобщей популяризации литиевых батарей любой, даже простой пользователь бытовых устройств, должен хотя-бы примерно представлять их функционирование и факторы риска при их эксплуатации. Среди произошедших несчастных случаев с аккумуляторами (например, электронных сигарет) лишь небольшой процент обязан производственному браку, чаще всего неисправности возникают в результате неправильной эксплуатации.
В нашей статье мы рассмотрим новейшие технологии, которые призваны защитить литиевые аккумуляторы, а также расскажем, почему они так важны.
Из теории литиевых аккумуляторов можно узнать, что им противопоказан перезаряд, переразряд или разряд слишком большими токами, а также короткие замыкания. При переразряде, в аккумуляторе образуются металлические связи между катодом и анодом, которые приводят к короткому замыканию при зарядке аккумулятора, что может привести к порче не только элементов питания, но и зарядного устройства. Перезаряд же (набор аккумулятором напряжения больше разрешенного) почти сразу ведёт к возгоранию, а зачастую даже к взрыву.
Для горения литиевых аккумуляторов не нужен кислород – оно происходит анаэробно, поэтому стандартные методы тушения не подходят; также, при реакции лития с водой выделяется еще и горючий газ водород, который только ухудшает ситуацию. Разряд высокими токами приводит к вздутию аккумулятора, а если нарушается целостность оболочки – происходит реакция лития с водяными парами в воздухе, что само по себе способно спровоцировать возгорание.
Всё это отнюдь не перечёркивает явные преимущества аккумуляторов, среди них:
- большая плотность энергии на единицу массы
- низкий процент саморазряда
- практически полное отсутствие эффекта памяти (когда заряд неполностью разряженного элемента приводит к снижению ёмкости)
- большой температурный диапазон работы
Незначительное снижение напряжения в процессе разряда накладывает некоторые обязанности на пользователя. Нельзя допустить превышения максимального напряжения (4.25 В), снижение напряжения ниже минимального (2.75 В), а также превышения рабочего тока, который отличается для каждой модели. И в этом хитром деле нам помогут специальные устройства – BMS-контроллеры!
Что такое BMS?
В переводе с английского, BMS (Battery Management System) – система управления батареей. Понятие слишком широкое, поэтому оно описывает почти все устройства, так или иначе обеспечивающие корректную работу аккумуляторов в данном устройстве, начиная с простых плат защиты или балансировки, заканчивая сложными микроконтроллерными устройствами, подсчитывающими ток разряда и количество циклов заряда (например, как в батареях ноутбуков). Мы не будем рассматривать сложные устройства – как правило, они специфичны и не предназначаются для рядового радиолюбителя, а выпускаются только под заказ для крупных производителей устройств.
То, что продаётся повсеместно, условно можно разделить на четыре категории:
- балансиры
- защиты (по току, напряжению)
- платы, обеспечивающие заряд (да, они тоже считаются устройствами BMS)
- те или иные комбинации вышеперечисленных вариантов, вплоть до объединения всего в одно устройство
Чем функциональней и разветвлённей защита – тем больше ресурс работы вашего аккумулятора.
Принцип работы BMS-контроллеров
Давайте посмотрим, по какому принципу BMS системы выполняют своё предназначение.
Структурно на плате можно выделить:
- микросхема защиты
- аналоговая обвязка (для определения тока/балансировки аккумуляторов)
- силовые транзисторы (для отключения нагрузки)
Рассмотри подробнее работу каждой из защит.
Защита по току (от короткого замыкания / превышения допустимого тока)
Существует множество вариантов узнать, какой ток течёт по линии. Самый распространённый – шунт (измерение падения напряжения на резисторе с низким сопротивлением и большой мощностью), но он требует большой точности измерений и весьма громоздкий. Метод с измерением на основе эффекта Холла лишён этих недостатков, но стоит дороже, поэтому самый распространённый метод определения КЗ на линии – измерение напряжения, которое проседает практически до нуля в режиме КЗ.
Современные контроллеры позволяют сделать это в очень короткий промежуток времени, за который ущерб не нанесётся ни подключенному устройству, ни самому аккумулятору. Но защита по току может функционировать и на шунте – ведь в случае BMS тут не нужно точное измерение, важен лишь переход падения напряжения через определённый порог. Как только событие наступает, контроллер сразу же отключает нагрузку при помощи транзисторов.
Защита по напряжению (от перезаряда или переразряда)
С этой защитой разобраться попроще, так как измерение напряжения легко можно сделать, используя аналогово-цифровой преобразователь. Но и тут есть некая специфика – стоит отметить, что если контроллер защищает большую сборку из последовательно соединённых аккумуляторов, то обычно он меряет напряжение каждой банки персонально, так как ввиду мельчайших различий в элементах они имеют мельчайшие же различия по ёмкости, что выливается в неравномерный разряд и возможность высадить «в ноль» отдельный элемент.
Некоторые системы не подключают нагрузку, не дождавшись дозаряда аккумулятора до определённого напряжения после срабатывания триггера по переразряду, то есть недостаточно подзарядить элемент пару минут, чтобы он поработал ещё хоть малое время – обычно необходимо зарядить до номинального напряжения (3.6 – 4.2В, в зависимости от типа аккумулятора).
Защита по температуре
Редко встречается в современных устройствах, но не зря большинство аккумуляторов для телефонов оборудовано третьим контактом – это и есть вывод терморезистора (резистора, имеющего чёткую зависимость сопротивления от окружающей температуры). Обычно перегрев не наступает сам собой и раньше успевают сработать другие виды защиты – например, перегрев может быть вызван коротким замыканием.
Алгоритм работы заряда батарей
Зарядка литиевых аккумуляторов происходит в 2 этапа: CC (constant current, постоянный ток) и CV (constantvoltage, постоянное напряжение). В течение первого этапа зарядное устройство постепенно поднимает напряжение таким образом, чтобы заряжаемый элемент брал заданный ток (обычное рекомендованное значение равно 1 ёмкости аккумулятора). Когда напряжение достигает 4В, зарядка переходит на второй этап и поддерживает напряжение 4.2В на батарее.
Когда элемент практически перестанет брать ток, он считается заряженным. На практике, алгоритм можно реализовать и при помощи обычного лабораторного блока питания, но зачем, если есть специализированные микросхемы, заранее «заточенные» под выполнение этой последовательности действий, например, самая известная из них – TP4056, способна заряжать током до 1А.
Что такое балансировка?
Напоследок мы оставили самую интересную функцию BMS – функцию балансировки элементов многобаночного аккумулятора.
Итак, что же такое балансировка? Сам процесс её подразумевает выравнивание напряжений на элементах батареи, соединённых последовательно для повышения общего напряжения сборки. Из-за небольших отличиях в ёмкости батарей они заряжаются за немного разное время, и когда одна банка может уже достигнуть апогея зарядки, остальные могут ещё недобрать заряд.
При разряде такой сборки большими токами наиболее заряженные элементы по закону Ома возьмут на себя больший ток (при равном сопротивлении ток будет зависеть от напряжения, которое находится в знаменателе формулы), что вызовет их ускоренный износ и может вывести элемент из строя. Для того, чтобы избежать этой проблемы, применяют аккумуляторные балансиры – специальные устройства, выравнивающие напряжения на банках до одного уровня.
Активные и пассивные балансиры
Активные балансиры производят балансировку уже при зарядке – зарядив одну банку сборки, они отключают её от питания, продолжая заряжать вторую. Как яркий пример такого устройства – популярное среди моделистов ЗУ Imax B6, в режиме Balance оно сразу проверяет напряжения индивидуально на каждой банке и справляется с этим на отлично.
Пассивные балансиры наоборот, разряжают элементы до одного значения малыми токами через резисторы. Их основной плюс – они не требуют внешнего питания, а также являются более точными за счёт применения аналоговых комплектующих (и более дешёвыми, так как не содержат сложных микросхем).
Рассмотрим некоторые примеры готовых плат BMS:
Источник