- Не работает гироскоп в телефоне
- Основные отличия гироскопа от акселерометра
- Признаки неисправного гироскопа
- Ремонт смартфона в Mobilap Repair
- [Вопросы] Акселератор и гироскоп работают неправильно
- Mi Comm APP
- Рекомендации
- Ремонт гироскопа и акселерометра в телефоне
- Ремонт гироскопа и акселерометра в телефоне
- Боремся с ошибками акселерометра, гироскопа, M7, цифрового компаса и других датчиков в iPhone 5S и не только
Не работает гироскоп в телефоне
Современный телефон включает в себя немалое количество различных датчиков, способствующих более комфортному обращению с устройством. К числу таковых уже давно относятся датчики освещенности и приближения, а также определяющий местоположение устройства датчик GPS. Оснащать смартфоны гироскопом начали сравнительно недавно. За небольшой промежуток времени этот элемент стал одним из главных в системе любого телефона. Его поломка приводит к определенным трудностям во время работы со смартфоном. Что же делать пользователю, если не работает гироскоп в телефоне?
Основные отличия гироскопа от акселерометра
Для лучшего понимания пользователем своего девайса важно сразу уяснить, что гироскоп и акселерометр – два разных датчика. Акселерометр отслеживает положение устройства и определяет угол его поворота относительно горизонтальной плоскости. Гироскоп определяет не только координаты положения смартфона в пространстве, но и скорость перемещения девайса.
Многие производители технологичных устройств совмещают работу гироскопа и акселерометра в одном смартфоне. За счет их симбиоза удается достичь улучшенной функциональности девайса, ведь один из датчиков чувствителен к изменению положения в пространстве, а другой – к линейному ускорению.
Признаки неисправного гироскопа
Основная функция гироскопа – поворот экрана смартфона. Если автоматический поворот экрана не работает – первый признак вышедшего из строя датчика. Однако не стоит сразу же предпринимать серьёзных решений. Необходимо учесть всевозможные ситуации, указывающие не на поломку гироскопа, а на особенность его работы. К таким ситуациям относится отказ функционирования датчика в определенных приложениях, при просмотре видео или незначительная задержка в развороте.
К основным признакам неисправного гироскопа следует отнести:
- экран не разворачивается вне приложений;
- гироскоп произвольно срабатывает без изменений положения устройства в пространстве;
- не срабатывает переворот экрана на рабочем столе.
Если не работает гироскоп в телефоне, высока вероятность программного сбоя. В некоторых случаях решить проблему удается путем обновления прошивки девайса. Но предпринимать подобные манипуляции со смартфоном разумно, если возникновению проблемы с гироскопом не предшествовало механическое повреждение. В случае падения телефона лучше всего сразу обратиться за помощью к специалистам, так как датчик – довольно хрупкая деталь.
Ремонт смартфона в Mobilap Repair
Ремонт неисправного гироскопа – процедура непростая. Мы рекомендуем вам обращаться за помощью к профессиональным мастерам по ремонту мобильной техники. Специалисты сервисного центра Mobilap Repair бесплатно осмотрят ваш телефон, точно установят причину, почему не работает гироскоп на Андроиде или любой другой операционной системе.
Предоставим гарантию на любые оказанные ремонтные услуги сроком до 1 года. Сделаем всё возможное, чтобы вы покинули наш сервисный центр со своим исправным верным «другом», а не отправились в салон сотовой связи за новым телефоном.
Источник
[Вопросы] Акселератор и гироскоп работают неправильно
Подскажите пожалуйста, что делать? Телефон кувыркнулся с высоты 50 см. на пол и теперь акселерометр и гироскоп работают неправильно- компас не показывает горизонт, программа строительного уровня показывает почти противоположные правильным значения, не работает поворот экрана, фотографии получаются перевернутыми и меню фотоаппарата перевёрнуто, браузеры и youtube не переворачиваются. Калибровка не помогает, в инженерном меню акселерометр и гироскоп выдают fail, но цифры меняются. Гироскоп показывает движение, а акселерометр выдает примерно одинаковые но постоянно меняющиеся значения независимо от того двигается телефон или нет. |
avatar.png (57.31 KB, Downloads: 0)
2018-03-23 21:19:03 Upload
Сервиса и вблизи нет. На радио рынке одни предлагают перепаять датчик (не дёшево), а другие говорят -смирись или купи новый. Перепрошивка или временное отключение батареи могут помочь? Что посоветуете в этой ситуации?
Viktor_ Ответить | из Redmi Note 3
Отвечаю сам себе ! Все решилось отключением батареи на несколько минут. Очень аккуратно открываем крышку, не забывая вытащить слот сим карт и помним, что к крышке тоже идёт шлейф. Отсоединяем шлейф батареи (шлейф от датчика отпечатка длинный я его даже не отключал), ждём несколько минут, можно даже кнопку питания осторожно нажать, и снова подключаем АКБ и закрываем крышку. На этом все! Кстати на рынке мне предложили замену датчика за 1000р. Надеюсь это ещё кому-то поможет. Только нужно иметь ввиду, что у меня датчики данные выдавали, но неправильные. |
lost_in_time17 | из MI 6
Тут надо понимать, что вы накрыли физический модуль (датчик). Вариантов не много. Искать и везти в нормальный сервис (какая перепайка нафиг?) или купить новый телефон. |
Mi Comm APP
Получайте новости о Mi продукции и MIUI
Рекомендации
* Рекомендуется загружать изображения для обложки с разрешением 720*312
Изменения необратимы после отправки
Cookies Preference Center
We use cookies on this website. To learn in detail about how we use cookies, please read our full Cookies Notice. To reject all non-essential cookies simply click «Save and Close» below. To accept or reject cookies by category please simply click on the tabs to the left. You can revisit and change your settings at any time. read more
These cookies are necessary for the website to function and cannot be switched off in our systems. They are usually only set in response to actions made by you which amount to a request for services such as setting your privacy preferences, logging in or filling in formsYou can set your browser to block or alert you about these cookies, but some parts of thesite will not then work. These cookies do not store any personally identifiable information.
These cookies are necessary for the website to function and cannot be switched off in our systems. They are usually only set in response to actions made by you which amount to a request for services such as setting your privacy preferences, logging in or filling in formsYou can set your browser to block or alert you about these cookies, but some parts of thesite will not then work. These cookies do not store any personally identifiable information.
These cookies are necessary for the website to function and cannot be switched off in our systems. They are usually only set in response to actions made by you which amount to a request for services such as setting your privacy preferences, logging in or filling in formsYou can set your browser to block or alert you about these cookies, but some parts of thesite will not then work. These cookies do not store any personally identifiable information.
Источник
Ремонт гироскопа и акселерометра в телефоне
Ремонт гироскопа и акселерометра в телефоне
На сегодня обычный используемый нами мобильный телефон уже полностью перешел в новый более продвинутый разряд смартфона. И не зря он называется умным, ведь на его функциональность теперь влияют не только нажатия пальцев самих пользователей, но и другие факторы пространства его использования. Например, положение мобильного телефона в руках владельца, угол его наклона, расположение и т.п. И сейчас мы хотим познакомить Вас именно с теми элементами телефона, которые за это все отвечают. Обобщенно их называют сенсорами и датчиками, и выделяют среди них Проксимити Сенсор, Световой Сенсор, Акселерометр и Гироскоп. О двух последних и пойдет речь в данной статье.
Акселерометр и гироскоп: что это за устройства и зачем они нужны?
Итак, коротко расскажем отдельно о каждом из этих устройств.
Акселерометр или G-сенсор – это мини-устройство, которое реагирует на ускорение Вашего гаджета и определяет угол его наклона. Благодаря этому датчику определенные программы получают информацию об изменении положения Вашего планшета или телефона и соответствующе реагируют на нее. Именно исходя из информации акселерометра, изображение на Вашем смартфоне поворачивается в соответствии с поворотами Вашего устройства на 90 градусов. Еще он помогает телефону правильно отмасштабировать страницы в браузере при повороте, обновить список Bluetooth при встряхивании устройства и даже измерить количество шагов, пройденных Вами за день.
Гироскоп или гиродатчик – это также небольшое приспособление, которое отслеживает ориентацию устройства в пространстве и его перемещение. Все его возможности еще не до конца освоены в смартфонах. Общая история использования такого устройства берет свое начало еще в 19 веке с морского флота. Дальнейшее его использование распространилось и в сферу авиации, а уже позже – мобильной телефонии. Такой мини-датчик в мобильном телефоне или планшете помогает учесть более точное положение устройства, например, его наклоны и крены. Это повышает даже реалистичность игр, которые используют для своего управления движения устройства.
Впервые гироскоп в свою конструкцию включила компания Apple с началом производства iPhone 4. Следом за ними он появился в конструкциях всего нескольких телефонов, но на 2011 год его работу можно было наблюдать уже в более 50 моделях смартфонов и планшетов. Но, как Вы сами догадались, лучше всего два вышеописанных мини-устройства действуют в тандеме.
Примеры совместной работы гироскопа и акселерометра
- Уже названный игровой процесс. Благодаря этим устройствам Вы можете управлять виртуальным автомобилем в гонках простыми движениями и встряхиваниями своего устройства.
- Синхронизация стандартных программ с работой данных датчиков. Например, в некоторых телефонах простой калькулятор может менять набор своих клавиш при повороте. В обычной вертикальной ориентации экрана Вам выдаются самые простые привычные клавиши, но при смене на горизонтальную раскладку данный набор кнопок расширяется и отображает тригонометрические или логарифмические функции.
- Расширенные функции музыкального проигрывателя. Наблюдается в iPhone, iPad, iPod и многих других моделях телефонов и планшетов. То есть, в портретной ориентации дисплея Вы видите стандартный список песен, авторов или альбомов, но при повороте – сможете полистать обложки проигрываемых альбомов.
- Работа карт определения местности. Именно благодаря данным датчикам Ваша карта не просто автоматически отображает тот кусочек местности, на которой Вы находитесь в данный момент, но и поворачивает его в соответствии с Вашими поворотами.
Сбои в работе данных устройств
Теперь Вы знаете о принципах работы и пользе вышеонисанных мини-датчиков. Поэтому поймете, если сбои будут связаны именно с их работой. Например, начнут некорректно считаться Ваши шаги, экран перестанет поворачиваться после поворота устройства или, наоборот, станет поворачивается самопроизвольно. При таком поведении планшета или телефона Вы можете сделать следующее:
- Попытаться откалибровать акселерометр. Для этого, как правило, используется программа GPS Status
- Проверить свое программное обеспечение и удалить некорректно работающее ПО
- Обратиться в сервисный центр, где мастера быстро определят причину неполадок и качественно ее устранят в короткие сроки
Если при прочтении данной статьи Вы поняли, что сбои в Вашем планшете / телефоне связаны именно с гироскопом или акселерометром и выбрали третий вариант из вышеперечисленных действий, предлагаем Вам посетить сервисный центр ITKey. Здесь Вы сможете проконсультироваться по работе данных мини-датчиков и исправить сбои, возникнувшие по каким-либо из причин.
Источник
Боремся с ошибками акселерометра, гироскопа, M7, цифрового компаса и других датчиков в iPhone 5S и не только
Многие наслышаны о проблеме с неоткалиброванными датчиками в новом iPhone 5S – инструмент «уровень», встроенный в родной компас iOS 7 показывает отклонение в несколько градусов, если устройство положить на плоскую поверхность, например, стол.
Если кратко, то в той или иной степени проблема ориентации датчиков присутствовала всегда и на всех устройствах с iOS. Ранее проблему не наблюдали так часто в виду отсутствия встроенного в мобильную OS приложения позволяющего измерять уровень. Аналогичная проблема имеет место быть и на других мобильных устройствах оснащенных акселерометром, поскольку принципы везде заложены одинаковые – с этим не понаслышке должен быть знаком каждый разработчик, которому приходилось иметь дело с различными датчиками движения и ориентации.
Я разрабатываю приложения с использованием датчиков акселерометра, гироскопа и цифрового компаса, ровно с тех самых пор, как разработчикам стал доступен API, практически с самого начала – будучи автором одного из самых популярных компасов для iOS с проблемами калибровки акселерометра и точности других датчиков я столкнулся еще несколько лет назад.
Способ решения проблемы достаточно тривиален и уже заложен в большую часть, как прикладных, так и игровых приложений, которые тем или иным образом используют датчики гравитации, движения и магнитного поля – калибровка, о которой должен позаботиться любой уважающий себя и своих пользователей разработчик. В зависимости от того, насколько сложно приложение и какие задачи оно решает, с технической точки зрения разработчика, реализация решения может быть и простой и сложной. Но принцип одинаков для всех.
Приглашаю разработчиков и пользователей приложений разобраться, как это работает, откуда берутся эти ошибки, почему не стоит излишне беспокоиться о проблемах акселерометра и почему не нужно бежать бегом в магазин для замены «бракованного» устройства – новое устройство вряд ли будет намного лучше, а проблемы с ошибками датчиков решаются другими способами.
Более четырех лет назад передо мной стояла задача разработки не обычного аналога двухмерного компаса, который поставлялся в комплекте с iOS, а компаса с использованием дополненной реальности, функционирующего в трехмерном пространстве и с высокой точностью совмещения виртуальных меток накладываемых на видео в реальном времени.
Чтобы совместить виртуальную метку объекта с его реальным положением на картинке получаемой с камеры, необходимо использовать все датчики движения имеющиеся в мобильном устройстве.
Акселерометр нужен для определения вектора гравитации или, выражаясь простым языком, чтобы узнать какая часть устройства смотрит вниз. Датчик цифрового компаса или магнетометр нужен для ориентации по сторонам света, чтобы узнать какой стороной устройство направлено на север. Позже появился гироскоп определяющий вращение устройства и, соответственно, позволяющий существенно повысить точность полноценной ориентации в трехмерном пространстве.
По мере разработки приложения и появления возможности использовать новые датчики практически сразу выявились индивидуальные недостатки присущие сенсорам.
Как оказалось во всех устройствах датчики выдают неодинаковые данные, различающиеся в пределах определенной погрешности, где-то отклонения больше, где-то меньше – при этом на показания сенсоров влияет целый ряд различных неочевидных факторов.
Изначальная реакция не имеющего опыта в этой сфере на тот момент была похожей на описанную в статьях про неправильно установленный сенсор в iPhone 5S, но дальнейшее изучение вопросов заставило изменить мнение и продолжить разработку не ожидая того, что производитель что-то может и будет исправлять, а учитывая особенности каждого из нужных сенсоров.
В результате из высокотехнологичной игрушки с проблемами с точностью получился достаточно точный пригодный для реального использования инструмент – главное, нужно знать, как им правильно пользоваться, что напрямую вытекает из особенностей каждого сенсора, о чем я в подробностях пишу ниже.
Поскольку в отличие от стандартного компаса работающего только в одной ориентации мое приложение должно было работать в любой из возможных, то уже на ранних этапах, еще до появления гироскопа, обнаружилась одна весьма странная особенность акселерометра.
Оказалось, что помимо того, что в каждом устройстве акселерометр имеет небольшое отклонение, в рамках одного и того же физического устройства это отклонение различно для разной ориентации устройства – например, в обычной портретной ориентации отклонение от реальной оси гравитации может быть в 1°, при этом, при повороте на 180°, в перевернутой портретной может быть и 4°.
Решением стало добавление возможности калибровки акселерометра раздельно для каждой из шести возможных ориентаций, а появление гироскопа дало новые возможности – калибровка датчиков движения, соответственно, в том или ином виде, уже имеется в каждом приличном приложении, их использующем.
Разработчикам игр пришлось несколько полегче – в играх достаточно поддерживать одну-две ориентации устройства, но все равно невозможно просто обойти стороной необходимость дать пользователю возможность использования калибровки даже с использованием датчика гироскопа.
В «уровне» встроенном в компас iOS 7 калибровка осуществляется просто нажатием на экран – достаточно коснуться экрана и текущее положение устройства будет считаться опорным или «нулевым» положением.
Компас и GPS/GLONASS (хотя казалось бы)
До появления гироскопа датчиком отвечающим за ориентацию в плоскости горизонта по сторонам света был сенсор цифрового компаса – самый чувствительный ко внешним факторам из всех датчиков и, соответственно, имеющий наибольшие проблемы с точностью.
Калибровка компаса осуществляется постоянно на уровне драйвера по мере того, как устройство вращается – чем больше данных получит устройство, тем точнее будет результат, но все равно будет присутствовать погрешность.
Абсолютное решение проблемы точности компаса, к сожалению, практически невозможно только с помощью калибровки. Хотя точность она и повышает. В iOS 7 встроенный компас имеет еще более жестокую калибровку, чем в предыдущих версиях ОС. Теперь экран калибровки закрывает весь экран, пока пользователь не произведет необходимые действия. В старых версиях было сообщение небольшого размера, которое не перекрывало экран.
Даже калибровка компаса и постоянная фильтрация данных особо не помогут в условиях неоднородного магнитного поля – ведь обычно после калибровки компаса человек поворачивается вокруг собственной оси, а не вокруг оси устройства, что при повороте на 90° смещает устройство в пространстве примерно на полметра, где могут быть другие магнитные условия.
Вблизи сильных магнитных полей, металлических объектов, проводов под напряжением показания магнетометра нестабильны из-за весьма высокой чувствительности к электромагнитным излучению – особенно это заметно в помещениях и машинах, которые чем более и более современны тем более и более нашпигованы всевозможной электронной начинкой.
Плюс ко всему, если от компаса требуется показывать географический север, то в дело вступает точность определения местоположения с GPS и GLONASS, так как координаты используются для определения магнитного склонения или разницы между направлениями к магнитному и серверному полюсам в конкретной точке земного шара.
Магнитный компас хорошо и точно работает на улице в полевых условиях, где нет магнитных помех – но даже при этом калибровка компаса желательна при каждом измерении азимута.
Направление на северный полюс наиболее точно определяется при хорошей точности GPS, также обычно на улице.
Для дальнейшего повышения точности, где она требуется, например, если нужно правильно нацелить друг на друга антенны Wi-Fi или радиосвязи, или произвести какие-либо точные измерения, уже нужна более глубокая поддержка на стороне приложения, о чем ниже.
Гироскоп, гирокомпас и автомобильный режим
В помещении, в машине, в лодке или в любом другом средстве передвижения, а также когда требуется более высокая точность и стабильность ориентации обычный магнитный компас не подходит – нужна ориентация либо по курсу движения, либо по гироскопу.
Соответственно, в своем приложении я реализовал обе эти возможности – для использования в различных средствах передвижения есть «автомобильный» режим и режим «гирокомпаса» для всего остального.
С автомобильным режимом все просто – используется курс движения, что зависит только от точности GPS и GLONASS, и, соответственно, достаточно точно определяется направление во время движения пешком, на велосипедах авто, лодках, самолетах и так далее.
С гирокомпасом ситуация одновременно и легче, и несколько сложнее.
В режиме гирокомпаса можно точно задать начальное или поправить текущее направление используя какой-либо внешний ориентир – солнце, луну, звезды, географические объекты, поросшую мхом сторону дерева, сориентироваться при помощи карт или используя другие методы.
Делается это просто для пользователя. Маркер наложенный на видео в реальном времени или указующая на объект стрелка на циферблате компаса совмещается с реальным положением объекта или с направлением на него. Вся сложная математика основанная на тысячах строк формул остается незаметной на уровне приложения.
Примерно те же действия выполняют пилоты или персонал обслуживающий современные военные самолеты, суда – проверка и последующая калибровка систем инерциальной навигации осуществляется в начале рейса и во время него, что также облегчается фиксированным расположением датчиков, тогда, как наши мобильные устройства находятся почти в постоянном движении.
Казалось бы гирокомпас является идеальным решением проблемы точности компаса и ориентации по сторонам света, но здесь есть и свои подводные камни.
В промышленных и военных системах инерциальной навигации, в отличие от того, что на сегодня есть в мобильных устройствах, для точного определения положения в пространстве используются целый комплекс, массив датчиков, что позволяет компенсировать ошибки и погрешности в показаниях.
В мобильных устройствах обычно присутствует только по одному экземпляру каждого датчика, что делает невозможным компенсацию ошибок и приводит к накоплению ошибки.
Чем больше времени проходит с момента калибровки гирокомпаса, а точнее, если смотреть с технической точки зрения, с момента определения опорного «нулевого» положения, тем больше накопленная ошибка, которая выражается в периодическом смещении ориентации гироскопа.
Приведенное ниже видео иллюстрирует проблему.
На видео снят компас в режиме «гирокомпаса» настроенный точно на сервер запущен на устройстве, которое неподвижно лежит на столе. Несмотря на то, что устройство неподвижно с течением времени происходит смещение. На 00:09 смещается с 0° на 359°. На 01:21 уменьшается до 358°. На 03:03 мы уже видим азимут 357°.
Накопление ошибки происходит из-за дискретности датчиков, которые в некоторые моменты могут пропускать события, как, например, на видео выше на показания гироскопа влияют мельчайшие вибрации вентиляторов блоков питания в мониторе и компьютере находящимися рядом на столе. Датчики, конечно, прогрессируют со временем, получают более высокое разрешение, но дискретность данных остается. Соответственно, на показания могут влиять и такие незначительные вещи, как сердцебиение и пульс.
На микромеханические системы таких сенсоров влияют и такие неочевидные факторы, как окружающая температура – температура хоть и недоступна для обычных разработчиков, но она учитывается для коррекции данных датчиков на уровне драйверов самой ОС.
При этом ориентация по гироскопу намного точнее, чем по датчику компаса – при развороте на 180° сенсор сообщает, что поворот составил те же 180°, а не 150°, как, например, может сказать компас в условиях помех.
Просто стоит иметь в виду, что у гироскопа есть такая особенность и учитывать это при использовании устройства в качестве того или иного инструмента или при разработке ваших собственных приложений и игр.
А как же новый сопроцессор движения M7?
С анонсом M7 я надеялся, что мобильные устройства станут ближе к большим системам инерциальной навигации, но, к сожалению, этот новый сопроцессор решает немного другие задачи.
Прежде всего M7 предназначен для снижения расходов энергии батареи при использовании GPS и других сенсоров. Тратится меньше времени на обсчет данных со спутников за счет того, что этот обсчет не начинается с нуля при запуске приложения. Дополнительно данные от других сенсоров собираются в фоновом режиме, даже когда приложение не запущено, что также позволяет уменьшить расход заряда батареи.
Например, на видео иллюстрирующем ситуацию с накоплением ошибки в гироскопе, приведенном выше, компас в режиме гирокомпаса работает на новом iPhone 5S уже с использованием M7.
Можно ли доверять мобильным устройствам?
Ответ – да, зная и учитывая особенности используемых датчиков.
Разработчики сделают собственные выводы самостоятельно.
Пользователям же, которым было интересно дочитать до конца, позволю себе дать несколько советов.
Менять устройство нет особой необходимости. Оно может быть не лучше. Да и кто сказал, что поверхность используемого стола строго перпендикулярна к вектору гравитации?
В играх с тактильным управлением, если ошибка акселерометра или гироскопа явно заметна, ищите в настройках или в режиме паузы меню калибровки.
Во всех актуальных приложениях реализующих инструмент «уровень» должна быть калибровка задающая «нулевое» положение – естественно, она есть и во встроенном приложении.
Магнитный компас хорошо работает только в походах на природе. Не стоит ожидать от устройства совершения невозможного пытаясь абсолютно точно определить направление рядом с компьютером, колонками, батареей отопления или в каком-либо средстве передвижения. Используйте те специально предназначенные для этого приложения и режимы, которые максимально соответствуют задаче.
При использовании магнитного компаса помните, что показания актуальны только сразу после калибровки, пока устройство не было перемещено на какое-либо значительное расстояние – поворот на 90° по оси позвоночника уже может потребовать повторной калибровки.
При использовании приложений типа «уровень» или «гирокомпас» помните, что показания датчика актуальны в течение примерно одной-двух минут, что вполне достаточно, чтобы произвести измерение – во избежание накопления ошибки повторяйте калибровку перед каждым измерением для повышения точности измерений.
Источник