Понижающий преобразователь lm2596 не работает

DC-DC понижающий преобразователь LM2596S

Сегодня речь пойдет о понижающем преобразователе постоянного напряжения LM2596S, заказанном мною на Aliexpress. Свежей эту покупку никак не назовешь, но руки до написания обзора у меня дошли только сейчас. В момент совершения заказа, мною было куплено 4 таких преобразователя. Два из них до сих пор лежали на полки в ожидании своего часа (планировал использовать их для продления жизни диодных ДХО в автомобиле, заказанных мною не так давно), но жара, выпавшая на отпуск, сменил эти планы.

Поскольку в +35 сидеть в душной квартире в городе занятие не из самых приятных, то я решил провести свой отпуск на природе за городом. А поскольку всяких электронных гаджетов с быстро садящимися аккумуляторов сейчас полно у всех, то вопрос их зарядки все так же актуален. Конечно, можно воспользоваться портативным зарядным устройство, но что делать, если и оно разрядится? И вот тут мне на помощь придет солнечная панель, заказанная пару лет назад и до сих пор просто пылящаяся без какого-либо применения. Почему? — спросите вы. Все просто, из-за отсутствия хоть какого-нибудь регулятора, напряжение с панели выдается в самых разных пределах: от 2 до 7 вольт. А что можно зарядить зарядкой в 6-7В? Уж точно не смартфон. Мой выдавал примерно такую надпись при попытке его зарядки от солнечной панели:

А если панель помещать в тень, то зарядка уже не идет из-за слишком низкого напряжения. Поэтому, единственным рабочим вариантом мне виделось установка преобразователя напряжения. И LM2596S подходит для этой чуть ли не идеально.
Итак, как я уже говорил, заказывал я сразу 4 преобразователя. На то, чтобы из Китая добраться в Беларусь, у посылки ушло около месяца. Если кому-нибудь интересно, то узнать маршрут движения посылки можно тут.

Читайте также:  Как настроит outlook для mail

Каждая плата находилась в отдельном антистатическом пакетике, который был запечатан. В живую преобразователь выглядит следующим образом:

В основе схемы лежит довольно широко распространённый импульсный регулируемый стабилизатор LM2596S-ADJ с рабочей частотой 150kHz. Максимальный выходной ток у этого преобразователя 3A (но тут уже без дополнительного радиатора не обойтись), коэффициент полезного действия находится в пределах 73-93%, что на сегодня далеко не самый лучший показатель. Однако для моих целей этого более чем достаточно.

К качеству изготовления преобразователя у меня особых претензий нет: местами с платы не смыт флюс, местами качество пайки немного хромает, но ничего из ряда вон.

Плата с односторонним расположением элементов. На оборотной стороне только наименование, модель и направление подключения.

Параметры у регулятора следующие (заявлено продавцом):

— Режим исправление: не синхронный выпрямитель;
— Входное напряжение: 3 В-40 В;
— Выходное напряжение: 1.3 В-35 В;
— Выходной ток: Номинальный ток 2A, максимальная 3A (дополнительный радиатор требуется);
— Эффективность преобразования: 92% (максимально);
— Частота: 65 кГц;
— Пульсация выхода: 30mV (максимум);
— Регулировка нагрузки: ± 5 процента;
— Регулировка напряжения: ± 2.5 процента;
— Рабочая температура:-минус 40 градусов-85 градусов;
— Размеры: 43 мм * 21 мм * 14 мм (Д * Ш * Г).

С учетом довольно компактных размеров платы (что с одной стороны плюс), все элементы расположены на ней рядом друг с другом, что существенно снижает рассеивание тепла (что с другой стороны существенный минус).

Регулировка выходного напряжения осуществляется при помощи многооборотного подстроечного резистора, благодаря чему можно без особых проблем задать нужное значение.

Клеммников на плате нет, так что все провода придется паять. Правда, сложного в этом ничего нет, так как места пайки подписаны. Перепутать что-либо просто невозможно. Зато есть отверстия для крепежных винтов на тот случай, если плату понадобится где-нибудь закрепить.

На входе и выходе стоят конденсаторы. На входе — емкостью 100 uF, максимальное напряжение 50В. На выходе — полимерный, что способствует снижению пульсации выходного напряжения.

Как я уже говорил, максимальный ток — 3А. Если превысить данное значение, то сработает защита, которая сводится к кратковременному разрыванию цепи. Но использовать данный регулятор на максимальном значении я бы никому не советовал, так как температура нагрева будет существенной (около 90-100 градусов).

В принципе, на этом с теорией покончено и можно переходить к усовершенствованию солнечной панели. Для этого надо разрезать идущий от нее провод, впаять в разрыв наш преобразователь и вуаля — все готово.

Положив панель на солнце, видим, что напряжение — 6,53В.

К сожалению, на солнце данные с ЖК экранчика тестера становятся еле различимыми, потому на фото их плохо видно. Так что буду их дублировать текстом.

Если сейчас к панели подключить кабель, а к нему телефон, то можно будет увидеть то, что показано на первом фото, размещенном в начале обзора.

Впаяв в цепь наш преобразователь, видим, как на нем начинает светиться синий диод, что свидетельствует о том, что на него подается напряжение.

Подключив USB тестер, при помощи построечного резистора выставляем напряжение на выходе в 5,29В.

Подключаем к нему кабель, а к кабелю телефон. Видим, что начинается зарядка 🙂 То есть наконец таки наша солнечная панель перестала быть бесполезной и начала помогать нам экономить электроэнергию 🙂

Во время зарядки напряжение упало до 4,92В. Зарядка осуществляется током в 0,22А. Не самый лучший показатель, но не критично. К тому же не стоит забывать, что заряжаемся мы от энергии солнца, а не от домашней сети.

Вот так выглядит зарядное устройство в сборе.

Так что вывод тут один — преобразователь работает и справляется с поставленными перед ним задачами. А в описанных выше условиях он даже не начал греться.

Да, на то, чтобы зарядить аккумулятор от солнечной панели придется потратить куда больше времени, нежели при зарядке от обычной розетки, но не следует забывать, что, во-первых, розетки не всегда под рукой, а, во-вторых, солнечная энергия пока что абсолютно бесплатная 🙂

На этом, пожалуй, все. Спасибо за внимание и потраченное время.

Источник

LM2596 КАК СТАБИЛИЗАТОР ТОКА

Все знают о китайских модулях понижающих преобразователей на LM2596S, доступных по цене менее 100 рублей в большинстве интернет-магазинов. Модуль представляет собой импульсный источник питания постоянного напряжения (CV), в котором выходное напряжение стабилизировано и устанавливается многооборотным подстроечным резистором.

Возникла идея использовать один из этих модулей с LM2596S для управления низковольтными светодиодами с использованием источников питания 9–12 В. Данный модуль может использоваться только в режиме CV, но бывает нужна функция ограничения тока — стабилизация постоянного тока (CC). Для адаптации этой микросхемы требуется внешняя схема датчика тока нагрузки. Вот принципиальная схема.

Токовый адаптер для модуля — схема

Как видите, это очень простая доработка, подходящая для размещения в модуле. Здесь нагрузка (OUT) получает питание от модуля LM2596S (IN) через схему адаптера. Затем адаптер контролирует ток нагрузки и выдает ОС (FB) на вход обратной связи (вывод 4 микросхемы LM2596S), чтобы управлять током нагрузки в заранее определенных пределах.

Контакт FB модуля LM2596

В документации на LM2596-ADj видно типичный пример включения. В примере резисторы R1 и R2 образуют делитель для отправки напряжения обратной связи на вывод обратной связи LM2596. Если напряжение ОС >1,23 В, выходное значение слишком велико, и LM2596 понижает выход до тех пор, пока опорное напряжение обратной связи не вернется к 1,23 В. Итак, можем проделать хитрость, просто подавая туда его, чтобы уменьшить выход до предела перегрузки по току. Если это так, LM2596 сочтет напряжение слишком высоким и немедленно снизит выходное напряжение.

LM2596AJ пример применения микросхемы по даташиту

Хотя модуль LM2596S точно следует включению из даташита, есть некоторые явные отклонения — можете увидеть их на схеме китайского модуля LM2596S, приведенной ниже.

Схема китайского модуля на LM2596S

Возвращаясь к конструкции адаптера, тут ключевым компонентом является резистор измерения тока R1. Вставив резистор для измерения тока между нагрузкой и выходом модуля, можем измерить ток, подаваемый на нагрузку. Резистор 2,2 Ом установит на нем около 700 мВ при токе 330 мА.

Когда значение тока превысит пороговый уровень, транзистор T1 будет направлять управляющее напряжение, чтобы установить контакт обратной связи выше его опорного напряжения. Светодиод LED1 является простым индикатором схемы, а конденсаторы C1 и C2 являются дополнительными стабилизаторами.

Схема с одним транзистором S8550 поможет справиться с поставленной задачей. При входе 3,0 В анод диода 1N4148 (D1) может получать около 2,3 В, а на конце резистора 2K (или 2K2) R3 будет около 1,6 В, что выше опорного напряжения 1,23 В, таким образом LM259S в модуле снижает выходное напряжение, что также снижает ток. Эта идея была успешно протестирована с различными модулями LM2596S.

Стабилизатор тока для LED

Таким образом получилась небольшая схема для добавления функции ограничения тока в модуль импульсного регулятора понижающего преобразователя LM2596S. Тест проводился со стандартным белым светодиодом мощностью 1 Вт на макетной плате и он отлично работал.

Кстати, китайские производители бывает используют поддельные микросхемы с маркировкой LM2596S! Такой себе клон LM2576-ADJ, переименованный в LM2596S-ADJ. Частота переключения LM2576 составляет около 50 кГц по сравнению с 150 кГц у LM2596, что позволяет легко увидеть это на осциллографе. Следующая заметная вещь — это значение индуктивности, 47 мкГн вместо рекомендуемых 33 мкГн.

В общем есть много вариантов модуля. Кроме того, часто нет конденсатора прямой связи (CFF), который может потребоваться параллельно с верхним резистором обратной связи, если выходное напряжение превышает 10 В, для обеспечения стабильности. Не рекомендуется использовать эти поддельные модули с непрерывной нагрузкой более 1 А, а также для нагрузок, требующих более 9 В.

Также чтобы использовать схему адаптера в реальности, сначала рассчитайте необходимый ток нагрузки, чтобы установить значение резистора считывания тока используя закон Ома. Затем включите схему, не подключая нагрузку, и отрегулируйте выходное напряжение до необходимого значения с помощью подстроечного резистора модуля LM2596S. Наконец, подключите нагрузку и сделайте пробный запуск. Обратите внимание на собственное падение напряжения на резисторе считывания тока. Лучше рассмотреть возможность установки входного напряжения немного выше, чтобы компенсировать это, но большинство нагрузок нормально работают и с немного более низким напряжением.

Источник

LM2596 — понижающий DC-DC преобразователь напряжения

LM2596 — это импульсный понижающий регулируемый стабилизатор постоянного напряжения. Имеет высокий КПД. Меньше нагревается если сравнивать с модулями на линейных стабилизаторах. Источник питания может применяться в широком спектре устройств. К безусловным достоинствам относится работа в ощутимом диапазоне входного напряжения. Вместе с большим КПД это дает хорошие результаты при последовательном включении DC-DC LM2596 с химическими источниками тока, солнечными панелями или ветряными генераторами.

Дополнив преобразователь DC-DC LM2596 трансформатором, выпрямителем и фильтром получим блок питания. На входе стабилизатора напряжение должно быть большее выходного минимум на 1.5 В. При потреблении мощности от DC-DC LM2596 более десяти Вт следует применять средства охлаждения.

Предусмотрены крепежные отверстия под винт. Клеммников нет, провода придется паять. Под микросхемой есть отверстия с металлизацией для дополнительного отвода тепла на обратную сторону платы.

Технические характеристики преобразователя LM2596

  • Эффективность преобразования (КПД): до 92%
  • Частота переключения: 150 кГц
  • Рабочая температура: от -40 до + 85 °C
  • Влияние изменения входного напряжения на уровень выхода: ± 0.5%
  • Поддержание установленного напряжения с точностью: ± 2.5%
  • Входное напряжение: 3-40 В
  • Выходное напряжение: 1.5-35 В (регулируемое)
  • Выходной ток: номинальный до 1А, от 1 до 2А заметно возрастает нагрев, предельный 3A (требуется дополнительный радиатор)
  • Размер: 45x20x14 мм

Принципиальная схема преобразователя LM2596

В некоторых модулях защитный диод D1 включен обратно-параллельно на входе, но в таком случае не нужно забывать подсоединить и предохранитель на входе, который сгорит, если перепутать полярность, также этот диод защищает от всплесков напряжения на выходе.

Существуют варианты с прямым включением диода D1 (SS34, SS54) на входе, обычно это диоды Шоттки, у этих диодов есть два положительных качества: весьма малое прямое падение напряжения (0.2-0.4 вольта) на переходе и очень высокое быстродействие.
Но дешёвые модули на базе LM2596 не имеют защитного диода, с одной стороны — это минус, так как случайно можно убить преобразователь перепутав полярность на входе, а с другой стороны — это плюс, потому что на диоде будет падать некоторое напряжение и греться при больших токах.

Схема подключения LM2596 DC-DC преобразователя

Подключается преобразователь очень просто, не стабилизированное напряжение подается на контакты модуля +IN, –IN (плюс и минус соответственно), а выходное напряжение снимается с контактов платы +OUT, -OUT.

С обратной стороны есть стрелка, что указывает в какую сторону идёт преобразование.

Источник

Оцените статью